Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.3.080

Electrical Properties and Dielectric Characteristics CCT-doped Zn/Pr-based Varistors with Sintering Temperature  

Nahm, Choon-Woo (Semiconductor Ceramics Lab., Department of Electrical Engineering, Dongeui University)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.3, 2009 , pp. 80-84 More about this Journal
Abstract
The microstructure, voltage-current, capacitance-voltage, and dielectric characteristics of CCT doped Zn/Pr-based varistors were investigated at different sintering temperatures. As the sintering temperature increased, the average grain size increased from 4.3 to 5.1 ${\mu}m$ and the sintered density was saturated at 5.81 g $cm^{-3}$. As the sintering temperature increased, the breakdown field decreased from 7,532 to 5,882 V $cm^{-1}$ and the nonlinear coefficient decreased from 46 to 34. As the sintering temperature increased, the donor density, density of interface states, and barrier height decreased in the range of (9.06-7.24)${\times}10^{17}\;cm^{-3}$, (3.05-2.56)${\times}10^{12}\;cm^{-2}$, and 1.1-0.95 eV, respectively. The dielectric constant exhibited relatively low value in the range of 529.1-610.3, whereas the $tan{\delta}$ exhibited a high value in the range of 0.0910-0.1053.
Keywords
Microstructure; Sintering; Electrical properties; Dielectric phenomena; Varistors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys. 50, 4475 (1979)   DOI
2 C.-W. Nahm, Mater. Lett. 60, 3394 (2006)   DOI   ScienceOn
3 C.-W. Nahm, Trans. Electr. Electron. Mater. 8, 105 (2007)   과학기술학회마을   DOI   ScienceOn
4 C.-W. Nahm, Mater. Lett. 62, 2900 (2008)   DOI   ScienceOn
5 L. Hozer, Semiconductor Ceramics: Grain Boundary Effects, Ellis Horwood,(1994), p.22
6 S. O. Kasap, Electronic Materials and Devices, McGraw-Hill, (2002), p. 526
7 C.-W. Nahm, Mater. Lett. 58, 2252 (2004)   DOI   ScienceOn
8 L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull. 65, 639(1986)
9 A. B. Alles, R. Puskas, G. Callahan, and V. L. Burdick, J. Am. Ceram. Soc. 76, 2098 (1993)   DOI   ScienceOn
10 Y. S. Lee and T. Y. Tseng, J. Am. Ceram. Soc. 75, 1636 (1992)   DOI
11 C.-W. Nahm, Mater. Lett. 57, 1317 (2003)   DOI   ScienceOn
12 J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)   DOI
13 Y.-S. Lee, K.-S. Liao, and T.- Y. Tseng, J. Am. Ceram. Soc. 79, 2379 (1996)   DOI   ScienceOn
14 C.-W. Nahm, Mater. Lett. 47, 182 (2001)   DOI   ScienceOn
15 C.-W. Nahm and B.-C. Shin, Mater. Lett. 57, 1322 (2003)   DOI   ScienceOn
16 C.-W. Nahm and B.-C. Shin, J. Mater. Sci.: Mater. Electron. 16, 725 (2005)   DOI   ScienceOn
17 T. K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)   DOI
18 A. B. Alles and V. L. Burdick, J. Appl. Phys. 70, 6883 (1991)   DOI
19 C.-W. Nahm and J.-S. Ryu, Mater. Lett. 53, 110 (2002)   DOI   ScienceOn