Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.4.216

Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process  

Han, Hyun-Suk (R&D Center, Chang Sung Co. Ltd.)
Kim, Changkyu (R&D Center, Chang Sung Co. Ltd.)
Yang, Seung-Jin (R&D Center, Chang Sung Co. Ltd.)
Kim, Yoon-Hyun (R&D Center, Chang Sung Co. Ltd.)
Publication Information
Korean Journal of Materials Research / v.26, no.4, 2016 , pp. 216-221 More about this Journal
Abstract
A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature ($300^{\circ}C$) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.
Keywords
Cu nanoparticle; infrared lamp; low temperature sintering; rapid thermal process; Cu nano ink;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H.-S. Han, S.-W. Kwak, B. Kim, T.-M. Lee, S.-H. Kim and I. Kim, Korean J. Mater. Res., 22, 9 (2012).
2 T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu and J. C. Sturm, Appl. Phys. Lett., 72, 519 (1998).   DOI
3 T. Kawase, S. Moriya, C. J. Newsome and T. Shimoda, Jpn. J. Appl. Phys., 44, 3649 (2005).   DOI
4 D. Kim and J. Moon, Electrochem. Solid-State Lett., 8, J30 (2005).   DOI
5 C. A. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu and D. Zhu, Adv. Mater., 20, 1286 (2008).   DOI
6 Y. Lee, J. R. Choi, K. Lee, N. E. Stott and D. Kim, Nanotechnology, 19, 415604 (2008).   DOI
7 J. Ryu, H.-S. Kim and H. T. Hahn, J. Electron. Mater., 40, 42 (2011).   DOI
8 C.-J. Wu, S.-M. Chen, Y.-J. Shenga and H.-K. Tsao, J. Taiwan Inst. Chem. Eng., 45, 2719 (2014).   DOI
9 M. L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen and H. Seppä, Nanotechnology, 19, 175201 (2008).   DOI
10 H.-S. Kim, S. R. Dhage, D.-E. Shim and H. T. Hahn, Appl. Phys. A: Mater. Sci. Process., 97, 791 (2009).   DOI
11 M. Zenou, O. Ermak, A. Saar and Z. Kotler, J. Phys. D:Appl. Phys., 47, 025501 (2014).   DOI
12 S. M. Yoon, J. Jo and K. Y. Kim, J. Korean Soc. Precis. Eng., 31, 505 (2014).   DOI
13 N.-R. Kim, J.-H. Lee, S.-M. Yi and Y.-C. Joo, J. Electrochem. Soc., 158, K165 (2011).   DOI