DOI QR코드

DOI QR Code

The Effect of TiO2 Addition on Low-temperature Sintering Behaviors in a SnO2-CoO-CuO System

  • Jae-Sang Lee (School of Advanced Materials and Electrical Engineering, Andong National University) ;
  • Kyung-Sik Oh (School of Advanced Materials and Electrical Engineering, Andong National University) ;
  • Yeong-Kyeun Paek (School of Advanced Materials and Electrical Engineering, Andong National University)
  • Received : 2024.03.21
  • Accepted : 2024.04.18
  • Published : 2024.04.28

Abstract

Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300℃ is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950℃. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950℃.

Keywords

Acknowledgement

This research was supported by a Grant from 2023 Research Funds of Andong National University.

References

  1. P. R. Bueno and J. A. Varela: Mater. Res., 9 (2006) 293. 
  2. P. R. Bueno, E. R. Leite, L. O. S. Bulhoes, E. Longo, and C. O. Paiva-Santos: J. Eur. Ceram. Soc., 23 (2003) 887. 
  3. M. Radecka, K. Zakrzewska, and M. Rekas: Sensors and Actuators., B47 (1998) 194. 
  4. T. Kimura, S. Inada, and T. Yamaguchi: J. Mater. Sci., 24 (1989) 220. 
  5. P. R. Bueno, M. R. Cassia-Santos, L. G. P. Simoes, J. W. Gomes, E. Longo, and J. A. Varela: J. Am. Ceram. Soc., 85 (2002) 282. 
  6. J. Lalande, R. Ollitrault-Fichet, and P. Boch: J. Eur. Ceram. Soc., 20 (2000) 2415. 
  7. J. A. Varela, J. A. Cerri, E. R. Leite, E. Longo, M. Shamsuzzoha, and R. C. Bradt: Ceram. Int., 25 (1999) 253. 
  8. N. Dolet, J. M. Heintz, L. Rabardel, M. Onillon, and J. P. Bonnet: J. Mater. Sci., 30 (1995) 365. 
  9. Y. Zong, Y. Cao, D. Jia, and P. Hu: Sensors and Actuators., B 145 (2010) 84. 
  10. Y. K. Paek, K. S. Oh, and H. J. Lee: J. Kor. Ceram. Soc., 44 (2007) 79. 
  11. P. G. Li, X. Guo, X. F. Wang, and W. H. Tang: J. Alloys Compd., 479 (2009) 74. 
  12. M. S. Castro and C. M. Aldao: J. Euro. Ceram. Soc., 18 (1998) 2233. 
  13. K. Lee, M. Sahu, S. Hajra, K. Mohanta, and H. J. Kim: Ceram. Int., 47 (2021) 22794. 
  14. H. J. van Daal: J. Appl. Phys., 39 (1968) 4467. 
  15. S. M. Zhou, Y. S. Feng, and L. D. Zhang: Chem. Phys. Lett., 369 (2003) 610. 
  16. B. Song, J. K. Jian, G. Wang, M. Lei, H. Q. Bao, and X. L. Chen: J. Alloys Compd., 460 (2008) 31.