DOI QR코드

DOI QR Code

Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process

적외선 램프를 이용하여 소결한 구리 나노잉크의 전기적 특성 평가에 관한 연구

  • 한현숙 ((주)창성 기초연구소 신공정개발팀) ;
  • 김창규 ((주)창성 기초연구소 신공정개발팀) ;
  • 양승진 ((주)창성 기초연구소 신공정개발팀) ;
  • 김윤현 ((주)창성 기초연구소 신공정개발팀)
  • Received : 2015.12.07
  • Accepted : 2016.03.17
  • Published : 2016.04.27

Abstract

A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature ($300^{\circ}C$) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.

Keywords

References

  1. H.-S. Han, S.-W. Kwak, B. Kim, T.-M. Lee, S.-H. Kim and I. Kim, Korean J. Mater. Res., 22, 9 (2012).
  2. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu and J. C. Sturm, Appl. Phys. Lett., 72, 519 (1998). https://doi.org/10.1063/1.120807
  3. T. Kawase, S. Moriya, C. J. Newsome and T. Shimoda, Jpn. J. Appl. Phys., 44, 3649 (2005). https://doi.org/10.1143/JJAP.44.3649
  4. D. Kim and J. Moon, Electrochem. Solid-State Lett., 8, J30 (2005). https://doi.org/10.1149/1.2073670
  5. C. A. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu and D. Zhu, Adv. Mater., 20, 1286 (2008). https://doi.org/10.1002/adma.200701812
  6. Y. Lee, J. R. Choi, K. Lee, N. E. Stott and D. Kim, Nanotechnology, 19, 415604 (2008). https://doi.org/10.1088/0957-4484/19/41/415604
  7. J. Ryu, H.-S. Kim and H. T. Hahn, J. Electron. Mater., 40, 42 (2011). https://doi.org/10.1007/s11664-010-1384-0
  8. C.-J. Wu, S.-M. Chen, Y.-J. Shenga and H.-K. Tsao, J. Taiwan Inst. Chem. Eng., 45, 2719 (2014). https://doi.org/10.1016/j.jtice.2014.05.002
  9. M. L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen and H. Seppä, Nanotechnology, 19, 175201 (2008). https://doi.org/10.1088/0957-4484/19/17/175201
  10. H.-S. Kim, S. R. Dhage, D.-E. Shim and H. T. Hahn, Appl. Phys. A: Mater. Sci. Process., 97, 791 (2009). https://doi.org/10.1007/s00339-009-5360-6
  11. M. Zenou, O. Ermak, A. Saar and Z. Kotler, J. Phys. D:Appl. Phys., 47, 025501 (2014). https://doi.org/10.1088/0022-3727/47/2/025501
  12. S. M. Yoon, J. Jo and K. Y. Kim, J. Korean Soc. Precis. Eng., 31, 505 (2014). https://doi.org/10.7736/KSPE.2014.31.6.505
  13. N.-R. Kim, J.-H. Lee, S.-M. Yi and Y.-C. Joo, J. Electrochem. Soc., 158, K165 (2011). https://doi.org/10.1149/1.3596545