• 제목/요약/키워드: low-power system chip

검색결과 284건 처리시간 0.023초

긴급 매뉴얼 저장용 저전력 메모리 태그의 설계 (Design of A Low Power Memory Tag for Storing Emergency Manuals)

  • 곽노섭;은성배;손경아;차신
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.293-300
    • /
    • 2020
  • Since the communication networks like the Internet collapses at disaster and calamity sites, a maintenance system that can be operated offline is required for the maintenance of various facilities. In this paper, we propose a system that memory tags attached on the facilities may transmit the emergency manual to a smart-phone, and the smart phone displays it off-line. The main issue is to design low energy mode memory tags. This study presents two kinds of methods and analyzes each's energy consumption mode. The first one is to develop memory tags by using one chip, and the next one is to design memory tags by forming multi-modules. Both ways show proper application fields under the low energy mode. This research selects the off-line maintenance system by using one chip design, and proposes the direction of contents for enhancing the effectiveness of the system. And we expect that this memory tags will be valuable for disaster scenes as well as battle fields.

범용 DSP 칩을 이용한 다중 채널 보청기의 저전력 구현 (Low-Power Implementation of A Multichannel Hearing Aid Using A General-purpose DSP Chip)

  • 김범준;변준;박영철
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.18-25
    • /
    • 2018
  • 본 논문에서는 범용 DSP 칩을 이용한 저전력 다중 채널 보청기 시스템 구현을 제시한다. 본 시스템은 WDRC(Wide Dynamic Range Compression)를 이용한 음향 증폭 알고리즘, 적응 하울링 제거 알고리즘, 단일 채널 잡음 감소 알고리즘을 포함한다. 저전력 구현을 위해 각 알고리듬을 정수연산 프로그램으로 재구성하였고, BelaSigna(R) 250의 명령어를 사용하여 정수연산 프로그램을 어셈블리 프로그램으로 변환하였다. 실시간 시스템을 사용한 실험을 통해 각 알고리즘의 성능을 확인하였다. 또한 구현 시스템의 클럭을 측정하였으며, 그 결과 전체 신호 처리 블록이 대략 7.02MHz 클럭에서 실시간으로 동작함을 확인하였다.

Inductorless 8.9 mW 25 Gb/s 1:4 DEMUX and 4 mW 13 Gb/s 4:1 MUX in 90 nm CMOS

  • Sekiguchi, Takayuki;Amakawa, Shuhei;Ishihara, Noboru;Masu, Kazuya
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권3호
    • /
    • pp.176- 184
    • /
    • 2010
  • A low-power inductorless 1:4 DEMUX and a 4:1 MUX for a 90 nm CMOS are presented. The DEMUX can be operated at a speed of 25 Gb/s with the power supply voltage of 1.05 V, and the power consumption is 8.9 mW. The area of the DEMUX core is $29\;{\times}\;40\;{\mu}m^2$. The operation speed of the 4:1 MUX is 13 Gb/s at a power supply voltage of 1.2 V, and the power consumption is 4 mW. The area of the MUX core is $30\;{\times}\;18\;{\mu}m^2$. The MUX/DEMUX mainly consists of differential pseudo-NMOS. In these MUX/DEMUX circuits, logic swing is nearly rail-to-rail, and a low $V_{dd}$. The component circuit is more scalable than a CML circuit, which is commonly used in a high-performance MUX/DEMUX. These MUX/DEMUX circuits are compatible with conventional CMOS logic circuit, and it can be directly connected to CMOS logic gates without logic level conversion. Furthermore, the circuits are useful for core-to-core interconnection in the system LSI or chip-to-chip communication within a multi-chip module, because of its low power, small footprint, and reasonable operation speed.

MBus: A Fully Synthesizable Low-power Portable Interconnect Bus for Millimeter-scale Sensor Systems

  • Lee, Inhee;Kuo, Ye-Sheng;Pannuto, Pat;Kim, Gyouho;Foo, Zhiyoong;Kempke, Ben;Jeong, Seokhyeon;Kim, Yejoong;Dutta, Prabal;Blaauw, David;Lee, Yoonmyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권6호
    • /
    • pp.745-753
    • /
    • 2016
  • This paper presents a fully synthesizable low power interconnect bus for millimeter-scale wireless sensor nodes. A segmented ring bus topology minimizes the required chip real estate with low input/output pad count for ultra-small form factors. By avoiding the conventional open drain-based solution, the bus can be fully synthesizable. Low power is achieved by obviating a need for local oscillators in member nodes. Also, aggressive power gating allows low-power standby mode with only 53 gates powered on. An integrated wakeup scheme is compatible with a power management unit that has nW standby mode. A 3-module system including the bus is fabricated in a 180 nm process. The entire system consumes 8 nW in standby mode, and the bus achieves 17.5 pJ/bit/chip.

低電力 MCU core의 設計에 對해

  • 안형근;정봉영;노형래
    • 전자공학회지
    • /
    • 제25권5호
    • /
    • pp.31-41
    • /
    • 1998
  • With the advent of portable electronic systems, power consumption has recently become a major issue in circuit and system design. Furthermore, the sophisticated fabrication technology makes it possible to embed more functions and features in a VLSI chip, consequently calling for both higher performance and lower power to deal with the ever growing complexity of system algorithms than in the past. VLSI designers should cope with two conflicting constraints, high performance and low power, offering an optimum trade off of these constraints to meet requirements of system. Historically, VLSI designers have focused on performance improvement, and power dissipation was not a design criteria but an afterthought. This design paradigm should be changed, as power is emerging as the most critical design constraint. In VLSI design, low power design can be accomplished through many ways, for instance, process, circuit/logic design, architectural design, and etc.. In this paper, a few low power design examples, which have been used in 8 bit micro-controller core, and can be used also in 4/16/32 bit micro-controller cores, are presented in the areas of circuit, logic and architectural design. We first propose a low power guidelines for micro-controller design in SAMSUNG, and more detailed design examples are followed applying 4 specific design guidelines. The 1st example shows the power reduction through reduction of number of state clocks per instruction. The 2nd example realized the power reduction by applying RISC(Reduced Instruction Set Computer) concept. The 3rd example is to optimize the algorithm for ALU(Arithmetic Logic Unit) to lower the power consumption, Lastly, circuit cells designed for low power are described.

  • PDF

전압-주파수-구역을 고려한 에너지 최적화 네트워크-온-칩 설계 방법론 (Voltage-Frequency-Island Aware Energy Optimization Methodology for Network-on-Chip Design)

  • 김우중;권순태;신동군;한태희
    • 대한전자공학회논문지SD
    • /
    • 제46권8호
    • /
    • pp.22-30
    • /
    • 2009
  • 네트워크 온 칩 (Network-on-Chip, NoC) 기술은 기존 시스템-온-칩(System-on-Chip, SoC) 설계에서 IP 블록 수 증가와 이에 수반된 상호 연결 네트워크 복잡화 및 데이터 대역폭 제한 등의 문제점을 해결하기 위한 새로운 설계 패러다임이다. 더불어 동작 주파수 증가에 따른 급격한 전력 소모 클럭 신호의 분배와 동기화 문제 역시 중요한 이슈이며, 이에 대한 대안으로 광역적으로는 비동기, 국부적으로는 동기식 (Globally Asynchronous Locally Synchronous, GALS) 인 시스템 설계 방법론이 저전력 기술과 결합되어 에너지 소모를 줄이고 모듈적인 설계를 위해서 고려되어 왔다 GALS 방식의 설계 스타일은 정밀한 시스템 수준 전력 관리를 적용하기 위해 최근 소개되고 있는 전압 주파수 구역 (Voltage-Frequency-Island, VFI) 의 개념과 매우 잘 어울린다. 본 논문에서는 VFI를 적용한 NoC 시스템에서 최적의 전압선택을 통해 에너지 소모를 최소화하는 효율적인 알고리즘을 제시한다. 최적의 코어(또는 처리 소자) 전압과 VFI를 찾기 위해 통신량을 고려한 코어 그래프 분할, 통신-경쟁 시간을 고려한 타일 매핑, 전력 변화량을 고려한 코어의 동적 전압 조절 그리고 효율적인 VFI 병합 및 VFI 동적 전압 재 조절을 포함한다. 본 논문에서 제안한 설계 방법론은 기존 연구결과 대비 평균적으로 10.3%의 에너지 효율 향상이 있다는 것을 실험 결과를 통해 보여준다.

MEMS 임베디드 시스템 설계 (MEMS Embedded System Design)

  • 홍선학
    • 디지털산업정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

Advanced Mobile Display System Architecture

  • Kim, Chang-Sun;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.850-853
    • /
    • 2005
  • This paper presents issues of display hardware architecture, relating to memory, display driver IC architecture, and chip-to-chip interface. To achieve a low power and low cost mobile phone, not only the display architecture must be carefully selected, but also the driver-ICs optimized to accommodate the different modes of operation found in typical handheld devices. The technique of forming a photo sensor in each pixel using TFT and display module architecture are developed to add multi functions in display such as fingerprint recognition, image scanning, and integrated touch screen. Detailed architectures of IC partitioning, high-speed serial interface, D/A converter, and multi functions such as fingerprint recognition and image scanning using photo sensors are important to a power optimized system.

  • PDF

ADSL용 4D TCM Decoder 저전력 구조 설계 연구 (A low-power VLSI architecture of 4D TCM decoder for ADSL)

  • 이금형;김재석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.871-874
    • /
    • 1999
  • We propose a low complexity M-D(multidimensional) TCM decoder VLSI architecture for ADSL System. We use the shared subset decoder module by modifying the whole decoding procedure. We reduce power consumption by using the MSA (modulo set area) operation, which removes multiplication in 4D metric calculation. Also the proposed TCM decoder reduces chip area. It can be adopted in high-speed xDSL system.

  • PDF

A Low Dynamic Power 90-nm CMOS Motion Estimation Processor Implementing Dynamic Voltage and Frequency Scaling Scheme and Fast Motion Estimation Algorithm Called Adaptively Assigned Breaking-off Condition Search

  • Kobayashi, Nobuaki;Enomoto, Tadayoshi
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.512-515
    • /
    • 2009
  • A 90-nm CMOS motion estimation (ME) processor was developed by employing dynamic voltage and frequency scaling (DVFS) to greatly reduce the dynamic power. To make full use of the advantages of DVFS, a fast ME algorithm and a small on-chip DC/DC converter were also developed. The fast ME algorithm can adaptively predict the optimum supply voltage ($V_D$) and the optimum clock frequency ($f_c$) before each block matching process starts. Power dissipation of the ME processor, which contained an absolute difference accumulator as well as the on-chip DC/DC converter and DVFS controller, was reduced to $31.5{\mu}W$, which was only 2.8% that of a conventional ME processor.

  • PDF