• Title/Summary/Keyword: low wind

Search Result 1,591, Processing Time 0.031 seconds

Application of recurrent neural network for inflow prediction into multi-purpose dam basin (다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가)

  • Park, Myung Ky;Yoon, Yung Suk;Lee, Hyun Ho;Kim, Ju Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1217-1227
    • /
    • 2018
  • This paper aims to evaluate the applicability of dam inflow prediction model using recurrent neural network theory. To achieve this goal, the Artificial Neural Network (ANN) model and the Elman Recurrent Neural Network(RNN) model were applied to hydro-meteorological data sets for the Soyanggang dam and the Chungju dam basin during dam operation period. For the model training, inflow, rainfall, temperature, sunshine duration, wind speed were used as input data and daily inflow of dam for 10 days were used for output data. The verification was carried out through dam inflow prediction between July, 2016 and June, 2018. The results showed that there was no significant difference in prediction performance between ANN model and the Elman RNN model in the Soyanggang dam basin but the prediction results of the Elman RNN model are comparatively superior to those of the ANN model in the Chungju dam basin. Consequently, the Elman RNN prediction performance is expected to be similar to or better than the ANN model. The prediction performance of Elman RNN was notable during the low dam inflow period. The performance of the multiple hidden layer structure of Elman RNN looks more effective in prediction than that of a single hidden layer structure.

Effects of Respiratory Rehabilitation Training Using a Harmonica for Patients With Spinal Cord Injuries (하모니카를 활용한 호흡재활 훈련이 척수손상환자의 호흡기능에 미치는 영향)

  • Kim, Hyuk Gun;Kim, Min Seo;Lim, Han Mil;Joeng, So;Shin, Uk Ju
    • Journal of Music and Human Behavior
    • /
    • v.15 no.2
    • /
    • pp.23-39
    • /
    • 2018
  • The purpose of this research was to investigate the effects of respiratory rehabilitation using a wind instrument for patients suffering from spinal cord injuries. From January 15, 2018 to April 15, 2018, we conducted ten 1-hour sessions of a harmonica program with eight patients with spinal cord injuries with average age of 37 years who could not perform abdominal breathing by themselves. We measured and compared patients' breathing capacity before and after the 10 sessions. Designed particularly for patients with spinal cord injuries resulting in a limited range of neck movement, the study used a 10-hole diatonic harmonica whose length was relatively short. For those patients who had difficulty using their hands, a harmonica holder was provided. Participants were trained to play simple tunes. They were guided to use abdominal breathing to make sounds, with emphasis on those parts requiring long and strong breathing. The results showed that for all eight patients both their breathing volume and their inspiratory volume increased following participation in the harmonica program. Also, the program had psychological benefits (e.g., more life satisfaction and less sadness) and additional physical benefits (e.g., less dizziness due to low blood pressure and better phlegm spitting). This study offers a unique way to help patients with spinal cord injuries to improve their breathing capacity, which may also be associated with a greater quality of life.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

A Study on Location and Space Layout of Traditional House of Jeong Dong-Ho - Focused on the Hyungsei-ron of Pungsu(Fengshui) - (예산 정동호가옥의 입지와 공간배치에 대한 연구 - 풍수 형세론을 중심으로 -)

  • Han, Jong-Koo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.2
    • /
    • pp.19-26
    • /
    • 2019
  • Pungsu theory is important one in the site selection and lay-out of traditional Korean village and house. In this aspect, Study with a view of Pungsu theory might be used as a proper method for understanding the traditional architecture in Korea. In this context, this study analyzes the Jeong, Dong-Ho's house which is designated no. 19 as an important folk cultural heritage, located in Jigok Ochu-gil 133-62, Godeok-myon, Yesan-gun, Chungnam province. The analysis of the site and space lay-out is carried out by Yong(Dragon), Hyoel(Auspicious Spot), Sa(Sands), Su(Water) aspects of the Pungsu(Fengshui) Hyungsei-ron. The house is depending upon soft dragon vein connecting with a earth type rear mountain. It looks southeast direction, Gonjwasonhyang(乾坐巽向). The hyeolseong(穴星) has classical venus shape, and there is no faults relatively. The Sasinsa condition is almost perfect that right blue dragon and left white tiger surround the hyeol with 3-4 layers and the facing mountain covers the front open area. The water flowing from inside of left and right mountain is joined in front of the house so it could stop flowing out of vital energy. Bibo forest(裨補樹) is placed properly to protect the easy disclose of water outlet. The house is well organized western house(西四宅) by analysis of Dongseosataek-ron(東西四宅論). Through the analysis, I found that the house has good Pungsu(Fengshui) environment fitted with Pungsu Hyungsei-ron. The house composed of small thatched roof is enclosed several times by low hills of back, left and right side. So it is believed that the site might be carefully evaluated by Yong, Hyoel, Sa, Su of Hyeongsei-ron for knowing whether the site condition could minimize the demage by strong winds and protect from the winter cold wind and secure water for drinking and farming and then selected. The method of Pungsu for evaluating the geographical condition of surrounding of a site is used as a traditional site analysis method for evaluating the suitability of long-term well and safe residence.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

A study on the development of distribution simulator and simulation results for use in distribution automation system of IEC 61850 protocol (IEC 61850 프로토콜의 배전자동화시스템에 사용을 위한 배전시뮬레이터 개발과 시뮬레이션 결과에 관한 연구)

  • Kim, Jae-Hong;Oh, Jae-Gon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • It is a study for the evaluation of the stability of the distribution automation system for the expansion of renewable energy. Through the Renewable Energy 3020 Implementation Plan, the government plans to expand new renewable energy and convert it to participatory energy that improves the quality of life of the people by 2030. The government has set a target of 20% of domestic supply energy for renewable energy generation by 2030. It is planning to establish more than 95 percent of its new facilities with clean energy such as solar power and wind power. By expanding the supply of renewable energy, new energy businesses and distributed power industry were fostered, and short-distance, low-voltage, and small-scale power generation were rapidly expanded rather than large-scale power development in the past. Due to this demand, the importance of power distribution facility operation has emerged and the need for distribution automation system is increasing. This paper discusses the development of a power distribution simulator for the performance and function evaluation of power distribution automation systems and presents the results of an interlocking test with the power distribution automation system. In order to introduce an advanced system into the power distribution system, it is necessary to take advantage of the transmission and distribution system. The DNP3.0 protocol is used in the distribution system and the IEC61850 protocol is used in the transmission and distribution system. It was concluded that the functions and performance of operations were satisfied when these two protocols are mixed and used in the distribution automation system.

A study on frost prediction model using machine learning (머신러닝을 사용한 서리 예측 연구)

  • Kim, Hyojeoung;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.543-552
    • /
    • 2022
  • When frost occurs, crops are directly damaged. When crops come into contact with low temperatures, tissues freeze, which hardens and destroys the cell membranes or chloroplasts, or dry cells to death. In July 2020, a sudden sub-zero weather and frost hit the Minas Gerais state of Brazil, the world's largest coffee producer, damaging about 30% of local coffee trees. As a result, coffee prices have risen significantly due to the damage, and farmers with severe damage can produce coffee only after three years for crops to recover, which is expected to cause long-term damage. In this paper, we tried to predict frost using frost generation data and weather observation data provided by the Korea Meteorological Administration to prevent severe frost. A model was constructed by reflecting weather factors such as wind speed, temperature, humidity, precipitation, and cloudiness. Using XGB(eXtreme Gradient Boosting), SVM(Support Vector Machine), Random Forest, and MLP(Multi Layer perceptron) models, various hyper parameters were applied as training data to select the best model for each model. Finally, the results were evaluated as accuracy(acc) and CSI(Critical Success Index) in test data. XGB was the best model compared to other models with 90.4% ac and 64.4% CSI, followed by SVM with 89.7% ac and 61.2% CSI. Random Forest and MLP showed similar performance with about 89% ac and about 60% CSI.

A study on changes in water cycle characteristics of university campus catchment: focusing on potential evapotranspiration improvement in Mt. Gwanak catchment (대학 캠퍼스 유역의 물순환 특성 변화에 관한 연구: 관악산 유역 잠재증발산량 개선을 중심으로)

  • Kim, Hyeonju;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1077-1089
    • /
    • 2022
  • With the construction of Seoul National University (SNU), the Mt. Gwanak watershed has undergone some urbanization. As with other campus catchments, data related to the water cycle is extremely limited. Therefore, this study began by collecting hydrological and meteorological data using Atmos-41, a complex meteorological observation instrument. The observation results of Atmos-41 were validated by analyzing the statistical characteristics and confidence intervals based on the monthly variability of data from the Korea Meteorological Administration. Results of the previous research were used to validate the simulated surface runoff and infiltration using the Storm Water Management Model (SWMM). The potential evapotranspiration (PET) simulated by the SWMM was rectified by comparing it to the Atmos-41 observation data. Multiple regression analysis was employed to adjust for the fluctuations in precipitation, relative humidity, and wind speed because the calculated SWMM PET tends to be underestimated during periods of low temperatures. R2 increased from 0.54 to 0.80 when compared to the Atmos-41 PET. The rate of change in the water cycle as a consequence of the SNU's construction resulted in a 15.7% increase in surface runoff, a 14.2% decrease in infiltration rate, and a 1.6% decrease in evaporation.