• 제목/요약/키워드: low tin

검색결과 437건 처리시간 0.043초

오존에 의한 전구체와 혼입제의 화학적 활성화 (Chemical activation of precursor and dopant by ozone)

  • 이상운;윤천호;박정일;박광자
    • 한국진공학회지
    • /
    • 제8권3A호
    • /
    • pp.201-206
    • /
    • 1999
  • Transparent and conduction tin oxide films have been deposited on glass substrates employing the low pressure chemical vapor deposition technique. Tetramethyltin, 1, 1, 1, 2-tetrafluoroethane, and pure oxygen or ozone-containing oxygen were used as the precursor, dopant and oxidant, respectively. In order to examine the role of ozone in the low pressure chemical vapor deposition of tin oxide films, deposition rate, and electrical and optical properties of tin oxide films deposited using ozone-containing oxygen were compared with those using pure oxygen. Tetramethyltin and 1, 1, 1, 2-tetrafluoroethane were chemically activated by thermally initiated decomposition of ozone. Using ozone-containing oxygen under otherwise identical deposition conditions, we succeeded in preparing tin oxide films f better quality at higher deposition rate.

  • PDF

Characterization of Sol-Gel Derived Antimony-doped Tin Oxide Thin Films for Transparent Conductive Oxide Application

  • Woo, Dong-Chan;Koo, Chang-Young;Ma, Hong-Chan;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.241-244
    • /
    • 2012
  • Antimony doped tin oxide (ATO) thin films on glass substrate were prepared by the chemical solution deposition (CSD) method, using sol-gel solution synthesized by non-alkoxide precursors and the sol-gel route. The crystallinity and electrical properties of ATO thin films were investigated as a function of the annealing condition (both annealing environments and temperatures), and antimony (Sb) doping concentration. Electrical resistivity, carrier concentration, Hall mobility and optical transmittance of ATO thin films were improved by Sb doping up to 5~8 mol% and annealing in a low vacuum atmosphere, compared to the undoped tin oxide counterpart. 5 mol% Sb doped ATO film annealed at $550^{\circ}C$ in a low vacuum atmosphere showed the highest electrical properties, with electrical resistivity of about $8{\sim}10{\times}10^{-3}{\Omega}{\cdot}cm$, and optical transmittance of ~85% in the visible range. Our research demonstrates the feasibility of low-cost solution-processed transparent conductive oxide thin films, by controlling the appropriate doping concentration and annealing conditions.

대기압 저온 플라스마에 의한 ITO(Indium Tin Oxide)박막 식각의 수소(H$_2$)효과 (Effect of Hydrogen in ITO(Indium Tin Oxide) Thin Films Etching by Low Temperature Plasma at Atmospheric Pressure)

  • 이봉주
    • 대한전자공학회논문지SD
    • /
    • 제39권8호
    • /
    • pp.12-16
    • /
    • 2002
  • 산화인듐(ITO)박막은 대기압 저온 플라스마에 의해 식각이 가능하다는 것을 확인했다. 식각은 수소유량 4 sccm에서 가장 깊게 발생하여, 120 /min를 나타내었다. 식각속도는 Hα*의 발광강도와 대응하였다. ITO박막의 식각 메커니즘은 Hα*에 의해 환원이 된후, 남게 된 금속 화합물은 CH*과 반응하여 기판으로부터 이탈한다고 생각된다. 식각은 식각시간 50초 이상에서부터, 기판온도 145℃ 이상부터 발생하기 시작하였다. 활성화 에너지는 Arrehenius plots으로부터 0.16eV(3.75kcal/mole)를 얻었다

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

150℃이하 저온에서의 미세 접합 기술 (Low Temperature bonding Technology for Electronic Packaging)

  • 김선철;김영호
    • 마이크로전자및패키징학회지
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2012
  • Recently, flip chip interconnection has been increasingly used in microelectronic assemblies. The common Flip chip interconnection is formed by reflow of the solder bumps. Lead-Tin solders and Tin-based solders are most widely used for the solder bump materials. However, the flip chip interconnection using these solder materials cannot be applied to temperature-sensitive components since solder reflow is performed at relatively high temperature. Therefore the development of low temperature bonding technologies is required in these applications. A few bonding techniques at low temperature of $150^{\circ}C$ or below have been reported. They include the reflow soldering using low melting point solder bumps, the transient liquid phase bonding by inter-diffusion between two solders, and the bonding using low temperature curable adhesive. This paper reviews various low temperature bonding methods.

Transparent Conducting Multilayer Electrode (GTO/Ag/GTO) Prepared by Radio-Frequency Sputtering for Organic Photovoltaic's Cells

  • Pandey, Rina;Kim, Jung Hyuk;Hwang, Do Kyung;Choi, Won Kook
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.219-223
    • /
    • 2015
  • Indium free consisting of three alternating layers GTO/Ag/GTO has been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting electrodes and the structural, electrical and optical properties of the gallium tin oxide (GTO) films were carefully studied. The gallium tin oxide thin films deposited at room temperature are found to have an amorphous structure. Hall Effect measurements show a strong influence on the conductivity type where it changed from n-type to p-type at $700^{\circ}C$. GTO/Ag/GTO multilayer structured electrode with a few nm of Ag layer embedded is fabricated and show the optical transmittance of 86.48% in the visible range (${\lambda}$ = 380~770 nm) and quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$. The resultant power conversion efficiency of 2.60% of the multilayer based OPV (GAG) is lower than that of the reference commercial ITO. GTO/Ag/GTO multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

도재소부용 금합금에서 인듐, 주석 첨가가 금속-도재계면 특성에 미치는 영향 (Effects of Indium and Tin on Interfacial Property of Porcelain Fused to Low Gold Alloys)

  • 남상용;곽동주;정석민
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.31-43
    • /
    • 2001
  • This study was performed to observe the micro-structure change of surface, behavior of oxide change of element, the component transformation of the alloy and the bonding strength between the porcelain interface in order to investigate effects of indium, tin on interfacial properties of porcelain fused to low gold alloy. Hardness of castings was measured with a micro-Vicker's hardness tester. The compositional change of the surface of heat-treated specimen was analyzed with an EDS and an EPMA. The interfacial shear bonding strength between alloy specimen and fused porcelain was measured with a mechanical testing system(MTS 858.20). The results were as follows: 1) The hardness value of alloy increased as increasing amount of indium addition. 2) The formation of oxidation increased as increasing indium and tin contents after heat treatment. 3) Diffusion of indium and tin elements increased as increasing indium and tin contents in metal-porcelain surface after porcelain fused to metal firing. 4) The most interfacial shear bonding strength was increased as increasing a composition of adding elements, and a heat-treatment time, and an oxygen partial pressure. From the results of this study it was found that the addition of alloying elements such as indium and tin increase hardness of as-cast alloy, produce surface oxide layer of adding elements by heat-treatment which may improve interfacial bonding strength between alloy and porcelain.

  • PDF

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1171-1174
    • /
    • 2007
  • We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

스퍼터 증착된 Zinc Tin Oxide 박막 트랜지스터의 공정 압력에 따른 특성 연구 (The Properties of RF Sputtered Zinc Tin Oxide Thin Film Transistors at Different Sputtering Pressure)

  • 이홍우;양봉섭;오승하;김윤장;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제13권1호
    • /
    • pp.43-49
    • /
    • 2014
  • Zinc-tin oxides (ZTO) thin film transistors have been fabricated at different process pressure via re sputtering technique. TFT properties were improved by depositing channel layers at lower pressure. From the analysis of TFTs comprised of multi layer channel, deposited consecutively at different sputtering pressure, it was suggested that the electrical characteristics of TFTs were mainly affected by interfacial layer due to their high conductance, however, the stability under the NBIS condition was influenced by whole bulk layer due to low concentration of positive charges, which might be generated by the oxygen vacancy transition, from Vo0 to $Vo^{2+}$. Those improvements were attributed to increasing sputtered target atoms and decreasing harmful effects of oxygen molecules by adopting low sputtering pressure condition.