DOI QR코드

DOI QR Code

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul (Department of Chemistry, Pusan National University) ;
  • Yang, Hae-Sik (Department of Chemistry, Pusan National University)
  • Published : 2007.07.20

Abstract

We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

Keywords

References

  1. Tahar, B. H. R.; Ban, T.; Ohya, Y.; Takahashi, Y. J. App. Phys. 1998, 83, 2631 https://doi.org/10.1063/1.367025
  2. Stotter, J.; Show, Y.; Wang, S.; Swain, G. Chem. Mater. 2005, 17, 4880 https://doi.org/10.1021/cm050762z
  3. Asanov, A. N.; Wilson, W. W.; Oldham, P. B. Anal. Chem. 1998, 70, 1156 https://doi.org/10.1021/ac970805y
  4. Zudans, I.; Paddock, J. R.; Kuramitz, H.; Maghasi, A. T.; Wansapura, C. M.; Conklin, S. D.; Kaval, N.; Shtoyko, T.; Monk, D. J.; Bryan, S. A.; Hubler, T. L.; Richardson, J. N.; Seliskar, C. J.; Heineman, W. R. J. Electroanal. Chem. 2004, 565, 311 https://doi.org/10.1016/j.jelechem.2003.10.025
  5. Das, J.; Aziz, M. A.; Yang, H. J. Am. Chem. Soc. 2006, 128, 16023
  6. Das, J.; Jo, K.; Lee, J. W.; Yang, H. Anal. Chem. 2007, 79, 2790 https://doi.org/10.1021/ac062291l
  7. Aziz, M. A.; Park, S.; Jon, S.; Yang, H. Chem. Commun. 2007, 2610
  8. Xue, D.; Elliott, C. M.; Gong, P.; Grainger, D. W.; Bignozzi, C. A.; Caramori, S. J. Am. Chem. Soc. 2007, 129, 1854 https://doi.org/10.1021/ja067339r
  9. Gao, Z.; Yang, Z. Anal. Chem. 2006, 78, 1470 https://doi.org/10.1021/ac051726m
  10. Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
  11. Mirsky, V. M. Trends Anal. Chem. 2002, 21, 439 https://doi.org/10.1016/S0165-9936(02)00601-5
  12. Yeung, S.-W.; Lee, T. M.-H.; Cai, H.; Hsing, I.-M. Nucleic Acids Res. 2006, 34, e118 https://doi.org/10.1093/nar/gkl702
  13. Trojanowicz, M. Trends Anal. Chem. 2006, 25, 480 https://doi.org/10.1016/j.trac.2005.11.008
  14. Jun. F.; Wu, K.; Yi, L.; Li, J. Bull. Korean Chem. Soc. 2005, 26, 1403 https://doi.org/10.5012/bkcs.2005.26.9.1403
  15. Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Adv. Mater. 2005, 17, 1729
  16. Balasubramanian, K.; Burghard, M. Small 2005, 2, 180
  17. Salzmann, C. G.; Llewellyn, S. A.; Tobias, G.; Ward, M. A. H.; Huh, Y.; Green, M. L. H. Adv. Mater. 2007, 19, 883 https://doi.org/10.1002/adma.200601310
  18. Zhao, B.; Hu, H.; Yu, A.; Perea, D.; Haddon, C. J. Am. Chem. Soc. 2005, 127, 8197 https://doi.org/10.1021/ja042924i
  19. Mutin, P. H.; Lafond, V.; Popa, A. F.; Granier, M.; Markey, L.; Dereux, A. Chem. Mater. 2004, 16, 5670 https://doi.org/10.1021/cm035367s
  20. Mutin, P. H.; Guerrero, G.; Vioux, A. C. R. Chimie 2003, 6, 1153 https://doi.org/10.1016/j.crci.2003.07.006

Cited by

  1. Preparation of Indium Tin Oxide Nanoparticle-modified 3-Aminopropyltrimethoxysilane-functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection vol.29, pp.7, 2017, https://doi.org/10.1002/elan.201700058
  2. Electrochemical Sensors Based on Carbon Nanotubes vol.9, pp.4, 2009, https://doi.org/10.3390/s90402289
  3. Indium Tin Oxide Nanoparticle-modified Glassy Carbon Electrode for Electrochemical Sulfide Detection in Alcoholic Medium vol.34, pp.5, 2018, https://doi.org/10.2116/analsci.17P586
  4. Platform for Highly Sensitive Alkaline Phosphatase-Based Immunosensors Using 1-Naphthyl Phosphate and an Avidin-Modified Indium Tin Oxide Electrode vol.21, pp.19, 2009, https://doi.org/10.1002/elan.200904641
  5. Electrochemically Directed Modification of ITO Electrodes and Its Feasibility for the Immunosensor Development vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.955
  6. Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1485
  7. An Amphiphilic Polymer‐ and Carbon Nanotube‐Modified Indium Tin Oxide Electrode for Sensitive Electrochemical DNA Detection with Low Nonspecific Binding vol.22, pp.22, 2007, https://doi.org/10.1002/elan.201000209
  8. Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode vol.31, pp.11, 2007, https://doi.org/10.5012/bkcs.2010.31.11.3259
  9. Fabrication of optimally configured layers of SWCNTs, gold nanoparticles, and glucose oxidase on ITO electrodes for high-power enzymatic biofuel cells vol.36, pp.7, 2007, https://doi.org/10.1007/s11814-019-0278-y
  10. Carbon Nanofiber and Poly[2‐(methacryloyloxy) ethyl] Trimethylammonium Chloride Composite as a New Benchmark Carbon‐based Electrocatalyst for Sulfide Oxidation vol.16, pp.12, 2007, https://doi.org/10.1002/asia.202100309
  11. Graphene and Carbon Nanotube‐based Electrochemical Sensing Platforms for Dopamine vol.16, pp.22, 2007, https://doi.org/10.1002/asia.202100898