• Title/Summary/Keyword: low temperature reduction

Search Result 1,037, Processing Time 0.025 seconds

Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.262-267
    • /
    • 2015
  • We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of $H_2$ and $C_2H_4$ at 500 and 30 sccm, respectively. On a planar $SiO_2$ substrate, high density SWNTs were grown at a minimum temperature of $760^{\circ}C$. In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at $760^{\circ}C$; low values of $I_D/I_G$ in the Raman spectra were also obtained. This means that the temperature of $760^{\circ}C$ is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.

Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide(NMD) in a Fixed Bed (고정층 반응기에서 망간광석(NMD)을 이용한 저농도 일산화탄소 산화특성)

  • Lee, Young Soon;Park, Jong Soo;Oh, Kwang Joong
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.60-68
    • /
    • 1996
  • The oxidation of carbon monoxide of low concentration on the natural manganese dioxide (NMD) has been investigated in a fixed bed reactor. The experimental variables were concentration of oxygen (500ppm~99.8%) and carbon monoxide (500ppm~10000ppm) and catalyst temperature ($50{\sim}750^{\circ}C$). The NMD(Natural Manganese Dioxide) has been characterized by temperature - program reduction(TPR) using 2.4% $CO/H_2$ as a reducing agent, thermogravimetric analysis (TGA), and reduction of NMD by 2.4% $CO/H_2$. It was found that the NMD catalyst activity on the unit area was greater than the $MnO_2$ catalyst for oxidation of CO at the same temperature. The thermal stability of oxidation activity was considered to be maintained when the NMD was heated to $750^{\circ}C$. The TGA, reduction by CO, and TPR of the NMD showed that the NMD had active lattice oxygen which was easily liberated on heating in the absence and low concentration of oxygen. The reaction order in CO is 0.701 between 500~3500ppm and almost zero between 3500~10000ppm of CO.

  • PDF

A Fundamental Experiment on Preventing Frost Damage at Early Age of Mortar in Low Temperature using Reduction Slag (환원슬래그를 사용한 모르타르의 저온에서의 초기동해 방지에 관한 기초적 실험)

  • Min, Tae-Beom;Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this research, it used cement powder and reduction slag, which generates high hydration heat in hydration reaction without heat cure below $-5^{\circ}C$ degree. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature due to own heat of concrete. and it is the result of physical characteristic and thermal property evaluation of reduction slag. Because reduction slag generates high hydration heat, compressive strength development is excellent. By generating highly hydration heat by $C_{12}A_7$ and $C_3A$ in reduction slag, compressive strength is developed in low temperature. In case of displacing only reduction slag without $SO_3$, it is indicated that quick-setting occurs by shortage of $SO_3$. For preventing quick-setting, gypsum is used essentially. According to this research result, in case of using reduction slag and gypsum as a ternary system, compressive strength developed 5MPa in 3 days below zero temperature. It is identified to prevent early frost damage of concrete below zero temperature.

Selective Catalytic Reduction of NO on Manganese Sulfates (망간황화물을 이용한 NO의 선택적 촉매 환원)

  • Jeong, Soon Kwan;Park, Tae Sung;Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.473-478
    • /
    • 2008
  • In this experimental, selective catalytic reduction (SCR) of NO with NH3 over manganese sulfates and manganese sulfates was investigated with catalytic activity, kinetics, temperature programmed reduction (TPR) and TGA. Manganese oxides showed high catalytic activity for SCR at temperature below $200^{\circ}C$. In case of manganese sulfates, the temperature at which SCR of nitric oxide appears shifted to high temperature with sulfation degree, and the maximum catalytic efficiency decreased. The temperature of the onset of reduction for manganese oxides and manganese sulfates is about $160^{\circ}C$ and over $280^{\circ}C$, respectively. We suggest that the onset of reduction in TPR correlates with the onset of SCR activity. Because the pre-exponential factor of manganese sulfates is lower as 1/1000 times than that of other catalysts, catalytic activity of manganese sulfates for NO showed low. The reduction temperature of natural manganese ore which consists of various metal oxides showed lower than that of pure manganese oxides.

NO REDUCTION PROPERTY OF Pt-V2O5-WO3/TiO2 CATALYST SUPPORTED ON PRD-66 CERAMIC FILTER

  • Kim, Young-Ae;Choi, Joo-Hong;Bak, Young-Cheol
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.239-246
    • /
    • 2005
  • The effect of Pt addition over $V_2O_5-WO_3/TiO_2$ catalyst supported on PRO-66 was investigated for NO reduction in order to develop the catalytic filter working at low temperature. Catalytic filters, $Pt-V_2O_5-WO_3/TiO_2/PRD$, were prepared by co-impregnation of Pt, V, and W precursors on $TiO_2$-coated ceramic filter named PRD (PRD-66). Titania was coated onto the pore surface of the ceramic filter using a vacuum aided-dip coating method. The Pt-loaded catalytic filter shifted the optimum working temperature from $260-320^{\circ}C$(for the catalytic filter without Pt addition) to $190-240^{\circ}C$, reducing 700 ppm NO to achieve the $N_x$ slip concentration($N_x\;=\;NO+N_2O+NO_2+NH_3$) less than 20 ppm at the face velocity of 2 cm/s. $Pt-V_2O_5-WO_3/TiO_2$ supported on PRD showed the similar catalytic activity for NO reduction with that supported on SiC filter as reported in a previous study, which implies the ceramic filter itself has no considerable interaction for the catalytic activity.

Conductivity measurements at low oxygen partial pressure of the stabilized $ZrO_{2}$ ceramics prepared by SHS

  • Soh, Dea-Wha;Korobova, Natalya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.451-454
    • /
    • 2001
  • The ionic conductivity of cubic solid solutions in the system $Y_{2}O_{3}-ZrO_{2}$ prepared by SHS was examined. Conductivity-temperature data obtained at $1000^{\circ}C$ in atmosphere of low oxygen partial pressure ($10^{-40}$ atm) for $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions indicated that these materials could be reduced, the degree of reduction being related to the measuring electric field. At low impressed fields no reduction was observed. Thus, these conductivity data give a transference number for the oxygen ion in $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions greater than 0.99.

  • PDF

Effects of Microstructural Parameters on the Reduction of Area in Hyper-eutectoid Steel Wires (과공석 강선에서 미세조직 인자들이 단면감소율에 미치는 영향)

  • An, K.S.;Park, J.H.;Bae, H.J.;Nam, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.306-312
    • /
    • 2016
  • Effects of manufacturing conditions, such as austenitizing temperature, patenting temperature and carbon content in steels, on mechanical properties, especially on reduction of area (RA), of hyper-eutectoid steel wires were investigated. RA increased and then decreased with transformation temperature. This was attributed to the presence of abnormal structures in steels transformed at low transformation temperatures and the occurrence of shear cracking during tensile testing of steels transformed at high transformation temperatures. The increase of austenitizing temperature resulted in the increased austenite grain size and consequently the decrease of RA. The decrease of RA with increasing the carbon content in steels was attributed to the increased fraction of cleavage fracture in tensile fractured surfaces.

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction (탄소열환원 공정을 사용한 다공질 탄화규소 세라믹스의 저온 제조공정)

  • Eom, Jung-Hye;Jang, Doo-Hee;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.552-557
    • /
    • 2006
  • A low temperature processing route for fabricating porous SiC ceramics by carbothermal reduction has been demonstrated. Effects of expandable microsphere content, sintering temperature, filler content, and carbon source on microstructure, porosity, compressive strength, cell size, and cell density were investigated in the processing of porous silicon carbide ceramics using expandable microspheres as a pore former. A higher microsphere content led to a higher porosity and a higher cell density. A higher sintering temperature resulted in a decreased porosity because of an enhanced densification. The addition of inert filler increased the porosity, but decreased the cell density. The compressive strength of the porous ceramics decreased with increasing the porosity. Typical compressive strength of porous SiC ceramics with ${\sim}70%$ porosity was ${\sim}13 MPa$.

Effects of Temperature, Pressure, Gas Velocity, and Capacity on Reduction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System (0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 산소전달입자의 환원반응 특성에 미치는 온도, 압력, 유속 및 용량의 영향)

  • RYU, HO-JUNG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.53-62
    • /
    • 2021
  • Batch type reduction-oxidation tests were performed to check effects of temperature, pressure, gas velocity, and capacity on reduction characteristics of mass produced particle in a 0.5 MWth chemical looping combustion system. The fuel conversion and the CO2 selectivity increased as the temperature increased and as the gas velocity decreased. However the CO2 selectivity showed the maximum and decreased as the capacity increased because the CO emission increased. The results show that high temperature, low gas velocity and low inert gas concentration are preferable to ensure high reactivity of oxygen carrier in the fuel reactor.