Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.6.262

Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes  

Jo, Sung-Il (Department of Nano Applied Engineering, Kangwon National University)
Jeong, Goo-Hwan (Department of Nano Applied Engineering, Kangwon National University)
Publication Information
Applied Science and Convergence Technology / v.24, no.6, 2015 , pp. 262-267 More about this Journal
Abstract
We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of $H_2$ and $C_2H_4$ at 500 and 30 sccm, respectively. On a planar $SiO_2$ substrate, high density SWNTs were grown at a minimum temperature of $760^{\circ}C$. In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at $760^{\circ}C$; low values of $I_D/I_G$ in the Raman spectra were also obtained. This means that the temperature of $760^{\circ}C$ is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.
Keywords
Ethylene; Chemical vapor deposition; Single-walled carbon nanotube; Low-temperature growth; Zeolite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Ramesh, T. Okazaki, R. Taniguchi, J. Kimura, T. Sugai, K. Sato, Y. Ozeki, and H. Shinohara, J. Phys. Chem. B 109, 1141 (2005).   DOI
2 M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca, J. B. Wagner, T. W. Hansen, I. V. Anoshkin, E. A. Obraztsova, A. V. Belkin, E. Sairanen, A. G. Nasibulin, J. Lehtonen, and E. I. Kauppinen, Scientific Report 3, 1460 (2013).   DOI
3 E. H. Kwak, K. B. Yoon, and G. H. Jeong, Curr. Appl. Phys. 14, 1633 (2014).   DOI
4 J. K. Park, Y. H. Ahn, J. Y. Park, S. Lee, and K. H. Park, Nanotechnology 21, 115706 (2010).   DOI
5 Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D. Takagi, Appl. Phys. Lett. 84, 1750 (2004).   DOI
6 A. Jorio, R. Satio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001).   DOI
7 ]J. C. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. S. Duesberg, S. Roth, and J. L. Sauvajol, Phys. Rev. Lett. 95, 217401 (2005).   DOI
8 S. Iijima and T. Ichihashi, Nature 363, 603 (1993).   DOI
9 S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).   DOI
10 M. F. L. D. Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339, 535 (2013).   DOI
11 M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong, and S. Mitra, Nature 501, 526 (2013).   DOI
12 H. Wang, L. Wei, F. Ren, Q. Wang, L. D. Pfefferle, G. L. Haller, and Y. Chen, ACS Nano 7, 614 (2013).   DOI
13 F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Nature 510, 522 (2014).   DOI
14 S. Zhang, L. Tong, Y. Hu, L. Kang, and J. Zhang, J. Am. Chem. Soc. 137, 8904 (2015).   DOI
15 Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, J. Phys. Chem. B 105, 11424 (2001).   DOI
16 G. H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi, and Y. Homma, J. Am. Chem. Soc. 127, 8238 (2005).   DOI
17 G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, J. Appl. Phys. 98, 124311 (2005).   DOI
18 G. H. Jeong, A. Yamazaki, S. Suzuki, Y. Kobayashi, and Y. Homma, Chem. Phys. Lett. 422, 83 (2006).   DOI
19 J. J. Kim, B. J. Lee, S. H. Lee, and G. H. Jeong, Nanotechnology 23, 105607 (2012).   DOI
20 G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, Appl. Phys. Lett. 90, 043108 (2007).   DOI
21 D. Takagi, Y. Homma, H, Hibino, S. Suzuki, and Y. Kobayashi, Nano Lett. 6, 2642 (2006).   DOI
22 S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, J. Am. Chem. Soc. 129, 1516 (2007).   DOI
23 Z. Ghorannevis, T. Kato, T. Kaneko, and R. Hatakeyama, J. Am. Chem. Soc. 132, 9570 (2010).   DOI
24 S. H. Lee and G. H. Jeong, Electron Mater. Lett. 8, 5 (2012).   DOI
25 K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A. A. Lucas, Zeolites 17, 416 (1996).   DOI
26 T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, Chem. Phys. Lett. 381, 422 (2003).   DOI
27 T. Hiraoka, T. Kawakubo, J. Kimura, R. Taniguchi, A. Okamoto, T. Okazaki, T. Sugai, Y. Ozeki, M. Yoshikawa, and H. Shinohara, Chem. Phys. Lett. 382, 679 (2003).   DOI
28 T. Moteki, Y. Murakami, S. Noda, S. Maruyama, and T. Okubo, J. Phys. Chem. C 115, 24231 (2011).   DOI
29 S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, and G. Haller, J. Phys. Chem. B 107, 11048 (2003).   DOI
30 P. B. Amama, S. Lim, D. Ciuparu, Y. Yang, L. Pfefferle, and G. L. Haller, J. Phys. Chem. B 109, 2645 (2005).   DOI