DOI QR코드

DOI QR Code

Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes

  • Jo, Sung-Il (Department of Nano Applied Engineering, Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Nano Applied Engineering, Kangwon National University)
  • Received : 2015.10.23
  • Accepted : 2015.11.09
  • Published : 2015.11.30

Abstract

We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of $H_2$ and $C_2H_4$ at 500 and 30 sccm, respectively. On a planar $SiO_2$ substrate, high density SWNTs were grown at a minimum temperature of $760^{\circ}C$. In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at $760^{\circ}C$; low values of $I_D/I_G$ in the Raman spectra were also obtained. This means that the temperature of $760^{\circ}C$ is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.

Keywords

References

  1. S. Iijima and T. Ichihashi, Nature 363, 603 (1993). https://doi.org/10.1038/363603a0
  2. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997). https://doi.org/10.1038/386474a0
  3. M. F. L. D. Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339, 535 (2013). https://doi.org/10.1126/science.1222453
  4. M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong, and S. Mitra, Nature 501, 526 (2013). https://doi.org/10.1038/nature12502
  5. H. Wang, L. Wei, F. Ren, Q. Wang, L. D. Pfefferle, G. L. Haller, and Y. Chen, ACS Nano 7, 614 (2013). https://doi.org/10.1021/nn3047633
  6. F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Nature 510, 522 (2014). https://doi.org/10.1038/nature13434
  7. S. Zhang, L. Tong, Y. Hu, L. Kang, and J. Zhang, J. Am. Chem. Soc. 137, 8904 (2015). https://doi.org/10.1021/jacs.5b05384
  8. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, J. Phys. Chem. B 105, 11424 (2001). https://doi.org/10.1021/jp012085b
  9. G. H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi, and Y. Homma, J. Am. Chem. Soc. 127, 8238 (2005). https://doi.org/10.1021/ja0505144
  10. G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, J. Appl. Phys. 98, 124311 (2005). https://doi.org/10.1063/1.2146054
  11. G. H. Jeong, A. Yamazaki, S. Suzuki, Y. Kobayashi, and Y. Homma, Chem. Phys. Lett. 422, 83 (2006). https://doi.org/10.1016/j.cplett.2006.02.030
  12. G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, Appl. Phys. Lett. 90, 043108 (2007). https://doi.org/10.1063/1.2433024
  13. J. J. Kim, B. J. Lee, S. H. Lee, and G. H. Jeong, Nanotechnology 23, 105607 (2012). https://doi.org/10.1088/0957-4484/23/10/105607
  14. D. Takagi, Y. Homma, H, Hibino, S. Suzuki, and Y. Kobayashi, Nano Lett. 6, 2642 (2006). https://doi.org/10.1021/nl061797g
  15. S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, J. Am. Chem. Soc. 129, 1516 (2007). https://doi.org/10.1021/ja0673332
  16. Z. Ghorannevis, T. Kato, T. Kaneko, and R. Hatakeyama, J. Am. Chem. Soc. 132, 9570 (2010). https://doi.org/10.1021/ja103362j
  17. S. H. Lee and G. H. Jeong, Electron Mater. Lett. 8, 5 (2012). https://doi.org/10.1007/s13391-011-0930-0
  18. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A. A. Lucas, Zeolites 17, 416 (1996). https://doi.org/10.1016/S0144-2449(96)00088-7
  19. T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, Chem. Phys. Lett. 381, 422 (2003). https://doi.org/10.1016/j.cplett.2003.10.007
  20. T. Hiraoka, T. Kawakubo, J. Kimura, R. Taniguchi, A. Okamoto, T. Okazaki, T. Sugai, Y. Ozeki, M. Yoshikawa, and H. Shinohara, Chem. Phys. Lett. 382, 679 (2003). https://doi.org/10.1016/j.cplett.2003.10.123
  21. T. Moteki, Y. Murakami, S. Noda, S. Maruyama, and T. Okubo, J. Phys. Chem. C 115, 24231 (2011). https://doi.org/10.1021/jp207930m
  22. S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, and G. Haller, J. Phys. Chem. B 107, 11048 (2003). https://doi.org/10.1021/jp0304778
  23. P. B. Amama, S. Lim, D. Ciuparu, Y. Yang, L. Pfefferle, and G. L. Haller, J. Phys. Chem. B 109, 2645 (2005). https://doi.org/10.1021/jp047158g
  24. P. Ramesh, T. Okazaki, R. Taniguchi, J. Kimura, T. Sugai, K. Sato, Y. Ozeki, and H. Shinohara, J. Phys. Chem. B 109, 1141 (2005). https://doi.org/10.1021/jp0465736
  25. M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca, J. B. Wagner, T. W. Hansen, I. V. Anoshkin, E. A. Obraztsova, A. V. Belkin, E. Sairanen, A. G. Nasibulin, J. Lehtonen, and E. I. Kauppinen, Scientific Report 3, 1460 (2013). https://doi.org/10.1038/srep01460
  26. E. H. Kwak, K. B. Yoon, and G. H. Jeong, Curr. Appl. Phys. 14, 1633 (2014). https://doi.org/10.1016/j.cap.2014.09.016
  27. J. K. Park, Y. H. Ahn, J. Y. Park, S. Lee, and K. H. Park, Nanotechnology 21, 115706 (2010). https://doi.org/10.1088/0957-4484/21/11/115706
  28. Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D. Takagi, Appl. Phys. Lett. 84, 1750 (2004). https://doi.org/10.1063/1.1667608
  29. A. Jorio, R. Satio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001). https://doi.org/10.1103/PhysRevLett.86.1118
  30. ]J. C. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. S. Duesberg, S. Roth, and J. L. Sauvajol, Phys. Rev. Lett. 95, 217401 (2005). https://doi.org/10.1103/PhysRevLett.95.217401