DOI QR코드

DOI QR Code

Effects of Temperature, Pressure, Gas Velocity, and Capacity on Reduction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System

0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 산소전달입자의 환원반응 특성에 미치는 온도, 압력, 유속 및 용량의 영향

  • 류호정 (한국에너지기술연구원) ;
  • 이도연 (한국에너지기술연구원) ;
  • 남형석 (한국에너지기술연구원) ;
  • 황병욱 (한국에너지기술연구원) ;
  • 김하나 (한국에너지기술연구원) ;
  • 원유섭 (한국에너지기술연구원) ;
  • 백점인 (한국전력공사 전력연구원)
  • Received : 2021.02.01
  • Accepted : 2021.02.28
  • Published : 2021.02.28

Abstract

Batch type reduction-oxidation tests were performed to check effects of temperature, pressure, gas velocity, and capacity on reduction characteristics of mass produced particle in a 0.5 MWth chemical looping combustion system. The fuel conversion and the CO2 selectivity increased as the temperature increased and as the gas velocity decreased. However the CO2 selectivity showed the maximum and decreased as the capacity increased because the CO emission increased. The results show that high temperature, low gas velocity and low inert gas concentration are preferable to ensure high reactivity of oxygen carrier in the fuel reactor.

Keywords

References

  1. H. J. Ryu, S. H. Jo, S. Y. Lee, D. Lee, H. Nam, B. W. Hwang, H. Kim, and J. I. Baek, "Solid circulation and reaction characteristics of mass produced particle in a 0.5 MWth chemical looping combustion system", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp, 170-177, doi: https://doi.org/10.7316/KHNES.2019.30.2.170.
  2. N. Son, J. Y. Do, N. K. Park, U. S. Kim, J. I. Baek, D. Lee, H. J. Ryu, and M. Kang, "Oxygen transfer capacity of pseudobrookite particles derived from ilmenite mineral (xwt.%CuO/ywt.%red Mud-zwt.%ilmenite)", Journal of Nanoscience and Nanotechnology, Vol. 19, No. 10, 2019, pp. 1-11, doi: https://doi.org/10.1166/jnn.2019.17087.
  3. J. Kim, D. Lee, H. Nam, S. H. Jo, B. W. Hwang, J. I. Baek, and H. J. Ryu, "Reaction characteristics of new oxygen carrier for 0.5 MWth chemical looping combustion system at high temperature and high pressure conditions", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp, 473-482, doi: https://doi.org/10.7316/KHNES.2018.29.5.473.
  4. H. J. Ryu, D. Lee, H. Nam, S. H. Jo and J. I. Baek, "Solid circulation characteristics of two oxygen carriers for chemical looping combustion system", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 4, 2018, pp, 393-400, doi: https://doi.org/10.7316/KHNES.2018.29.4.393.
  5. Y. Liu, W. Jia, Q. Guo, and H. J. Ryu, "Effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier", Chinese Journal of Chemical Engineering, Vol. 22, No. 11-12, 2014, pp. 1208-1214, doi: http://dx.doi.org/10.1016/j.cjche.2014.09.011.
  6. Q. Guo, X. Hu, Y. Liu, W. Jia, M. Yang, M. Wu, H. Tian, and H. J. Ryu, "Coal chemical-looping gasification of Ca-based oxygen carriers decorated by CaO", Powder Technology, Vol. 275, 2015, pp. 60-68, doi: http://dx.doi.org/10.1016/j.powtec.2015.01.061.
  7. J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, and L. F. de Diego, "Progress in chemical-looping combustion and reforming technologies", Progress in Energy and Combustion Science, Vol. 38, No. 2, 2012, pp. 215-282, doi: https://doi.org/10.1016/j.pecs.2011.09.001.
  8. H. Kim, D. Lee, D. H. Bae, D. Shun, J. I. Baek, and H. J. Ryu, "Comparison of reduction reactivity of new oxygen carriers for chemical looping combustion system in a bubbling fluidized bed", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 5, 2017, pp. 554-560, doi: https://doi.org/10.7316/KHNES.2017.28.5.554.
  9. H. J. Ryu, J. Kim, B. W. Hwang, H. Nam, D. Lee, S. H. Jo, and J. I. Baek, "Hydrodynamics and solid circulation characteristics of oxygen carrier for 0.5 MWth chemical looping combustion system", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 6, 2018, pp. 635-641, doi: https://doi.org/10.7316/KHNES.2018.29.6.635.
  10. H. J. Ryu, D. Lee, H. Nam, S. H. Jo, S. Y. Lee, and J. I. Baek, "Effect of operating variables on solid holdup in an air reactor of 0.5 MWth chemical looping combustion system", Journal of Energy & Climate Change, Vol. 13, No. 2, 2018, pp. 145-153, doi: https://doi.org/10.7316/KHNES.2018.29.6.635.