• Title/Summary/Keyword: low dimensional materials

Search Result 431, Processing Time 0.028 seconds

Development of Feature-Based 3D CAD Assembly Data Simplification System for Equipment and Materials (특징형상 기반 기자재 3D CAD 조립체 데이터 간략화 시스템 개발)

  • Kim, Byung Chul;Kwon, Soonjo;Park, Sunah;Mun, Duhwan;Han, Soonhung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1075-1084
    • /
    • 2014
  • It is necessary to construct an equipment catalog in plant design. A different level of detail may be needed for the three-dimensional (3D) computer aided design (CAD) data for equipment, depending on the purpose. Equipment suppliers provide CAD data with high complexity, whereas plant designers need CAD data with low complexity. Therefore, it is necessary to simplify the 3D CAD assembly data. To resolve this issue, a system for automatically simplifying the 3D CAD assembly data of equipment was developed. This paper presents the architecture of the system, the detailed functions of the system, and a neutral data format used for uploading simplified 3D CAD assembly data to a plant 3D CAD system. In addition, experiment results using the prototype system are explained.

Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates

  • Rezaei, Milad;Haghshenas, Davoud F.;Ghorbani, Mohammad;Dolati, Abolghasem
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.202-211
    • /
    • 2018
  • In this work, Fe-Pd alloy films have been electrodeposited on different substrates using an electrolyte containing $[Pd(NH_3)_4]^{2+}$ (0.02 M) and $[Fe-Citrate]^{2+}$ (0.2 M). The influences of substrate and overpotential on chemical composition, nucleation and growth kinetics as well as the electrodeposited films morphology have been investigated using energy dispersive X-ray spectroscopy (EDS), current-time transients, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) patterns. In all substrates - brass, copper and sputtered fluorine doped tin oxide on glass (FTO/glass) - Fe content of the electrodeposited alloys increases by increasing the overpotential. Also the cathodic current efficiency is low due to high rate of $H_2$ co-reduction. Regarding the chronoamperometry current-time transients, it has been demonstrated that the nucleation mechanism is instantaneous with a typical three dimensional (3D) diffusion-controlled growth in the case of brass and copper substrates; while for FTO, the growth mode changes to 3D progressive. At a constant overpotential, the calculated number of active nucleation sites for metallic substrates is much higher than that of FTO/glass; however by increasing the overpotential, the number of active nucleation sites increases. The SEM micrographs as well as the XRD patterns reveal the formation of Fe-Pd alloy thin films with nanostructure arrangement and ultra-fine grains.

Modeling of Cooling Channels of Injection Mould using Functionally Graded Material (기능성 경사 복합재를 이용한 사출금형의 냉각회로 모델링)

  • Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1647-1653
    • /
    • 2011
  • The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs.

Panoramic radiological study to identify locally displaced maxillary canines in Bangladeshi population

  • Alif, Sheikh Mohammad;Haque, Sejuty;Nimmi, Naima;Ashraf, Ali;Khan, Saeed Hossain;Khan, Mahfujul Haq
    • Imaging Science in Dentistry
    • /
    • v.41 no.4
    • /
    • pp.155-159
    • /
    • 2011
  • Purpose : This study was performed to determine the prevalence of maxillary canine impaction on a basis of a single panoramic radiograph in Bangladeshi population. Materials and Methods : A random sample of seven hundred panoramic radiographs was collected from the patient record of a dental clinic. All the selected panoramic radiographs were taken from January 2009 to August 2010 by a single panoramic radiograph machine with the same exposure time (19 seconds) for all radiographs. One hundred and twenty panoramic radiographs were excluded to minimize the selection bias. In a dim lit room, an observer assessed the radiographs on a standard radiographic light box. The position of the impacted maxillary canine was recorded in line with the longitudinal axis of a tooth using the edge of a metal ruler. Data were subsequently put on SPSS 11.5 software and chi-square (${\chi}^2$) tests were applied to find out the association. Results : Among 580 panoramic radiographs it was found that impacted maxillary canines were present in only 7 (1.2%) radiographs. A statistical significant difference was found between the age of the patients and the vertical position of the impacted canines (p=0.000) and between the age of the patients and the horizontal position of the impacted canines (p=0.003). Conclusion : The prevalence was found to be low compared with the present study from the limitation of panoramic image. Further study needs to include three-dimensional imaging modality.

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.

Effects of Au Nanoparticle Monolayer on or Under Graphene for Surface Enhanced Raman Scattering

  • Kim, B.Y.;Jung, J.H.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.636-636
    • /
    • 2013
  • Since first discovery of strong Raman spectrum of molecules adsorbed on rough noble metal, surface enhanced Raman scattering (SERS) has been widely used for detection of molecules with low concentration. Surface plasmons at noble metal can enhance Raman spectrum and using Au nanostructures as substrates of SERS has advantages due to it has chemical stability and biocompatibility. However, the photoluminescence (PL) background from Au remains a problem because of obtaining molecular vibration information. Recently, graphene, two-dimensional atomic layer of carbon atoms, is also well known as PL quenchers for electronic and vibrational excitation. In this study, we observed SERS of single layer graphene on or under monolayer of Au nanoparticles (NPs). Single layer graphene is grown by chemical vapor deposition and transferred onto or under the monolayer of Au NPs by using PMMA transfer method. Monolayer of Au NPs prepared using Langmuir-Blodgett method on or under graphene surface provides closed and well-packed monolayer of Au NPs. Scanning electron microscopy (SEM) and Raman spectroscopy (WItec, 532 nm) were performed in order to confirm effects of Au NPs on enhanced Raman spectrum. Highly enhanced Raman signal of graphene by Au NPs were observed due to many hot-spots at gap of closed well-packed Au NPs. The results showed that single layer graphene provides larger SERS effects compared to multilayer graphene and the enhancement of the G band was larger than that of 2D band. Moreover, we confirm the appearance of D band in this study that is not clear in normal Raman spectrum. In our study, D band appearance is ascribed to the SERS effect resulted from defects induced graphene on Au NPs. Monolayer film of Au NPs under the graphene provided more highly enhanced graphene Raman signal compared to that on the graphene. The Au NPs-graphene SERS substrate can be possibly applied to biochemical sensing applications requiring highly sensitive and selective assays.

  • PDF

Performance and Variation-Immunity Benefits of Segmented-Channel MOSFETs (SegFETs) Using HfO2 or SiO2 Trench Isolation

  • Nam, Hyohyun;Park, Seulki;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.427-435
    • /
    • 2014
  • Segmented-channel MOSFETs (SegFETs) can achieve both good performance and variation robustness through the use of $HfO_2$ (a high-k material) to create the shallow trench isolation (STI) region and the very shallow trench isolation (VSTI) region in them. SegFETs with both an HTI region and a VSTI region (i.e., the STI region is filled with $HfO_2$, and the VSTI region is filled with $SiO_2$) can meet the device specifications for high-performance (HP) applications, whereas SegFETs with both an STI region and a VHTI region (i.e., the VSTI region is filled with $HfO_2$, and the STI region is filled with $SiO_2$) are best suited to low-standby power applications. AC analysis shows that the total capacitance of the gate ($C_{gg}$) is strongly affected by the materials in the STI and VSTI regions because of the fringing electric-field effect. This implies that the highest $C_{gg}$ value can be obtained in an HTI/VHTI SegFET. Lastly, the three-dimensional TCAD simulation results with three different random variation sources [e.g., line-edge roughness (LER), random dopant fluctuation (RDF), and work-function variation (WFV)] show that there is no significant dependence on the materials used in the STI or VSTI regions, because of the predominance of the WFV.

Enhancing Production Rate of Emulsion via Parallelization of Flow-Focusing Generators (유동-집속 생성기의 병렬화를 통한 에멀젼 생산속도 향상)

  • Jeong, Heon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.761-766
    • /
    • 2018
  • Droplet-based microfluidic device has led to transformational new approaches in various applications including materials synthesis and high-throughput screening. However, efforts are required to enhance the production rate to industrial scale because of low production rate in a single droplet generator. In here, we present a method for enhancing production rate of monodisperse droplets via parallelization of flow-focusing generators. For this, we fabricated a three-dimensional monolithic elastomer device (3D MED) that has the 3D channel structures in a single layer, using a double-sided imprinting method. We demonstrated that the production rate of monodisperse droplet is increased by controlling the flow rate of continuous and dispersed phases in 3D MED with 8 droplet generators. Thus, we anticipate that this microfluidic system will be used in wide area including microparticle synthesis and screening system via encapsulation of various materials and cells in monodisperse droplets.

Investigating the Leaching Rate of TiTe3O8 Towards a Potential Ceramic Solid Waste Form

  • Noh, Hye Ran;Lee, Dong Woo;Suh, Kyungwon;Lee, Jeongmook;Kim, Tae-Hyeong;Bae, Sang-Eun;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.509-516
    • /
    • 2020
  • An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline TiTe3O8 was synthesized through a solid-state reaction between stoichiometric amounts of TiO2 and TeO2 powder. The resultant TiTe3O8 crystal had a three-dimensional (3D) structure consisting of TiO6 octahedra and asymmetric TeO4 seesaw moiety groups. The melting temperature of the TiTe3O8 powder was 820℃, and the constituent TeO2 began to evaporate selectively from TiTe3O8 above around 840℃. The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the TiTe3O8 crystal was less than the order of 10-4 g·m-2·d-1 at 90℃ for durations of 14 d over a pH range of 2-12. The chemical durability of the TiTe3O8 crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.

Measurements of Thermal Diffusivity of Heavy Rolled Low Carbon Steel Plate With Laser Flash Technique (레이저 섬광법에 의한 압연된 저탄소강 판재의 열확산계수 측정)

  • 배신철;임동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.157-171
    • /
    • 1990
  • The heat transfer problem associated with pulse technique for measuring thermal diffusivity was solved by means of Green function. The obtained general solution was discussed so as to apply for all possible cases; kinds of boundary condition and heat source, irradiation positions of heat pulse, radius of heat pulse, one-and two-dimensional heat flow, finite pulse time effects and radiation heat loss systems. Experimentally, the laser flash lamp was used as heat source for measuring thermal diffusivity of low carbon, aluminium chilled steel plate, which was heavily rolled in order to measure the variation of thermal diffusivity in the temperature range from room temperature through 500.deg. C. The derived results are (1) materials produced from same furnace showed a somewhat different thermal diffusivity values. (2) the thermal diffusivity value of rolled material was smaller than unrolled material and the difference decreased as increasing temperature. (3) the thermal diffusivity value of an annealed and temper rolled material was larger than the value of a cold rolled material, even thought smaller than unrolled material. (4) In case of heavy rolled material, there was no consistent relationships between the thermal diffusivity and the reduction in thickness.