# Investigating the Leaching Rate of $TiTe_3O_8$ Towards a Potential Ceramic Solid Waste Form

Hye Ran Noh<sup>1,2,T</sup>, Dong Woo Lee<sup>1,T</sup>, Kyungwon Suh<sup>1</sup>, Jeongmook Lee<sup>1</sup>, Tae-Hyeong Kim<sup>1</sup>, Sang-Eun Bae<sup>1,2</sup>, Jong-Yun Kim<sup>1,2\*</sup>, and Sang Ho Lim<sup>1,2,\*</sup>

<sup>1</sup>Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea

<sup>2</sup>University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea

<sup>T</sup> These authors contributed equally to this work and are co-first authors

(Received November 6, 2020 / Revised November 20, 2020 / Approved December 14, 2020)

An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline  $TiTe_3O_8$  was synthesized through a solid-state reaction between stoichiometric amounts of  $TiO_2$  and  $TeO_2$  powder. The resultant  $TiTe_3O_8$  crystal had a three-dimensional (3D) structure consisting of  $TiO_6$  octahedra and asymmetric  $TeO_4$  seesaw moiety groups. The melting temperature of the  $TiTe_3O_8$  powder was  $820^{\circ}$ , and the constituent  $TeO_2$  began to evaporate selectively from  $TiTe_3O_8$  above around  $840^{\circ}$ . The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the  $TiTe_3O_8$  crystal was less than the order of  $10^{-4}$  g·m<sup>-2</sup>·d<sup>-1</sup> at 90°C for durations of 14 d over a pH range of 2-12. The chemical durability of the  $TiTe_3O_8$  crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.

Keywords: Solid waste form, Solid-state reaction, TiTe<sub>3</sub>O<sub>8</sub>, Leaching rate, Chemical durability

\*Corresponding Author.

Jong-Yun Kim, Korea Atomic Energy Research Institute, E-mail: kjy@kaeri.re.kr, Tel: +82-42-868-4736 Sang Ho Lim, Korea Atomic Energy Research Institute, E-mail: slim@kaeri.re.kr, Tel: +82-42-868-2105

#### ORCID

Hye Ran Noh Kyungwon Suh Tae-Hyeong Kim Jong-Yun Kim http://orcid.org/0000-0003-0404-2542 http://orcid.org/0000-0003-3548-3535 http://orcid.org/0000-0001-6483-5902 http://orcid.org/0000-0002-9165-0986

Dong Woo Lee Jeongmook Lee Sang-Eun Bae Sang Ho Lim http://orcid.org/0000-0003-3463-3743 http://orcid.org/0000-0002-3496-5965 http://orcid.org/0000-0003-2668-8950 http://orcid.org/0000-0002-8583-5677

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

#### 1. Introduction

The isolation of radioactive waste from the environment has been a critical concern for public health and safety. Since the first research on a new concept for vitreous or crystalline materials for the immobilization of radioactive waste was conducted in the 1950s, various glass waste forms have been studied for high-level radioactive wastes [1-3]. Amorphous borosilicate glass has been selected as a solid waste form in the past because, due to the unstructured molecular arrangement of glass, it can incorporate a wide range of chemical elements (ca. 20-30 elements). Other necessary properties such as waste loading, chemical durability, and processability for amorphous borosilicate glass are all reasonably acceptable for radioactive waste immobilization applications [4]. Thus, borosilicate glass has been used as a reference solid waste form for comparison of the performance characteristics. However, borosilicate glass is thermodynamically unstable and less resistant to leaching and weathering [5] than more stable crystalline ceramic waste forms currently in use. Various titanate-based (zirconolite, hollandite, perovskite, etc.), alumina-based (magnetoplumbite, nepheline, etc.), and silicate-based (pollucite, etc.) ceramic waste forms are advantageous over glass waste form equivalents [6,7]. These minerals exhibit various crystalline structures, such as fluorite, ABO3, and ABO4. A-site cations and B-site cations can be exchanged with fission product elements such as Cs, Rb, Sr, Ba, Th, and Pu [7-11].

Processing temperature and chemical durability are noteworthy properties when screening for a potential solid waste form. Processing temperature is an important property in terms of cost-effectiveness and secondary off-gas treatment for volatile radionuclides [6], while chemical durability is one of the most important performance characteristics of solid waste. There are several standard leach test protocols developed by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), the American Society of Testing and Materials (ASTM), and American Nuclear Society (ANS). However, there is no single standard leach test method that can evaluate the performance of chemical durability under various field conditions of disposal facilities.

In this study, a chemical durability test was conducted based on the protocol described by ASTM C1220-17 [12] with some minor modifications of the experimental conditions. We identified the Ti<sup>4+</sup>-Te<sup>4+</sup>-oxide system for the immobilization of radioactive waste. TiTe<sub>3</sub>O<sub>8</sub> is a potential Ti<sup>4+</sup>-Te<sup>4+</sup>-oxide because we anticipate that the replacement of cations in the crystal framework at the Ti<sup>4+</sup> site with dopant cations can produce stable Ti<sub>1-x</sub>M<sub>x</sub>Te<sub>3</sub>O<sub>8</sub> (M = Er<sup>3+</sup>, Ce<sup>4+</sup>, and Sn<sup>4+</sup>) compounds [13-15]. In addition, a high quality solid solution between stoichiometric amounts of TiO<sub>2</sub> and TeO<sub>2</sub> is expected to be easily prepared through a simple solid-state reaction at 600-700°C.

### 2. Experimental

# 2.1 Solid-state synthesis of TiTe<sub>3</sub>O<sub>8</sub>

A polycrystalline sample of TiTe<sub>3</sub>O<sub>8</sub> was prepared by the solid-state reaction of TiO<sub>2</sub> and TeO<sub>2</sub> powder. TiO<sub>2</sub> (Showa, 99.0%) and TeO<sub>2</sub> (Aldrich, 99.0%) were used as purchased without further purification. Stoichiometric amounts of TiO<sub>2</sub> and TeO<sub>2</sub> were thoroughly ground together in an agate mortar and pestle. After grinding, the reaction mixtures were pressed into pellets and transferred to an alumina crucible. The samples placed in the alumina crucible were heated to 650°C at a rate of 5°C·min<sup>-1</sup>, held at this temperature for 18 h for sintering, and cooled to room temperature at a rate of 5°C·min<sup>-1</sup>.

#### 2.2 Material characterization

Powder X-ray diffraction (XRD) analyses were conducted to examine the purity of the polycrystalline  $TiTe_3O_8$ phase with a Bruker D8-Advance diffractometer using Cu K $\alpha$  radiation at an operating voltage of 40 kV and a current of 40 mA. The powder samples, which were prepared by grinding the pellet samples, were mounted on the sample holder, and measured in the 2 $\theta$  range of 10-80° with a step size of 0.02° and a step time of 0.1 s. To investigate the thermal effects, the powder samples were heated at a rate of 10°C·min<sup>-1</sup> up to the three different target temperatures of 300, 600, and 900°C. Each target temperature was maintained for 10 min and subsequently cooled to room temperature to measure the powder XRD patterns. The weight loss and melting temperature of the TiTe<sub>3</sub>O<sub>8</sub> powder samples were measured by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively, using a SCINCO STA N-1500 TGA/DSC analyzer at a heating rate of 5°C·min<sup>-1</sup> to 1,000°C under a flow of argon gas.

After the leaching experiments, scanning electron microscopy (SEM) analyses were conducted on the pelletized samples using a JEOL JSM-6610LV scanning electron microscope to investigate any harmful effects on the crystalline structures and surface morphologies. XRD analysis was also performed for the pelletized samples after leaching under the same operating conditions as those for the powder samples.

#### 2.3 Chemical durability test

The static leaching test method described by ASTM C1220-17 using deionized water was used to test the chemical durability of pelletized TiTe<sub>3</sub>O<sub>8</sub> samples. High-purity deionized water is one of the most frequently employed aqueous solvents for leaching, as the appropriate pH and salt compositions of the aqueous leaching solution can be manipulated to simulate the specific groundwater conditions at the disposal sites. The 15-mm-diameter and 1.4-mm-thick pellets were immersed in 10 mL of deionized water. The acidity of the leaching solution spanned from an acidic solution (0.01 M HCl, pH=2) to an alkaline solution (0.01 M NaOH, pH=12). A 17 mL Teflon-lined, stainless steel autoclave containing the leaching solution and the pelletized sample was placed in a convection oven at 90°C for 7 and 14 d. After 14 d,

| Table 1. Crystallographic data of TiTe <sub>3</sub> O <sub>8</sub> [16] |                                  |  |  |  |
|-------------------------------------------------------------------------|----------------------------------|--|--|--|
| Empirical formula                                                       | TiTe <sub>3</sub> O <sub>8</sub> |  |  |  |
| Crystalline color                                                       | Yellow                           |  |  |  |
| Molecular mass (g·mol <sup>-1</sup> )                                   | 558.67                           |  |  |  |
| Crystal system                                                          | Cubic                            |  |  |  |
| Space group                                                             | <i>I a</i> -3 (No. 206)          |  |  |  |
| Ζ                                                                       | 8                                |  |  |  |
| a = b = c  (Å)                                                          | 10.9585(5)                       |  |  |  |
| $V({ m \AA}^3)$                                                         | 1,315.99(10)                     |  |  |  |
| $ ho_{ m caled}  ({ m g} \cdot { m cm}^{\cdot 3})$                      | 5.639                            |  |  |  |

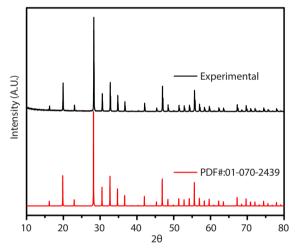



Fig. 1. Powder X-ray diffraction patterns of the solid-state synthesized TiTe<sub>3</sub>O<sub>8</sub> powders (black line), and the reference structure of pure TiTe<sub>3</sub>O<sub>8</sub> (red line, PDF#: 01-070-2439).

the concentration of the released Ti was measured by inductively coupled plasma-mass spectrometry (ICP-MS) using a iCAP TQ ICP-MS (Thermo Fisher Scientific) with the limit of detection (LOD) of 0.005 mg $\cdot$ L<sup>-1</sup>.

# 3. Results and discussion

## 3.1 Crystalline Structures

The incorporation of radionuclides into the crystalline framework of ceramic waste forms is key to the

| Atom  | Х          | У         | Z          | Occupancy | $U_{ m eq}$ a |
|-------|------------|-----------|------------|-----------|---------------|
| Te(1) | 0.0000     | 0.2500    | 0.21092(3) | 1.0       | 0.00696(17)   |
| Ti(1) | 0.0000     | 0.0000    | 0.0000     | 1.0       | 0.0056(3)     |
| O(1)  | -0.1025(2) | 0.4381(2) | 0.3681(2)  | 1.0       | 0.01155(5)    |
| O(2)  | 0.1736(2)  | 0.1736(2) | 0.1736(2)  | 1.0       | 0.0077(7)     |

Table 2. Atomic positions, site occupancies, and equivalent isotropic displacement parameters for TiTe<sub>3</sub>O<sub>8</sub> [16]

<sup>a</sup>  $U_{eq}$  (Å<sup>-2</sup>) is defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

Table 3. Selected interatomic bond lengths and bond angles for  $TiTe_3O_8$  [16]

| Te-O                    | Bond length (Å) | O-Te-O                         | Bond angles (°) |
|-------------------------|-----------------|--------------------------------|-----------------|
| $Te(1) - O(1) \times 2$ | 1.884(2)        | O(1) - Te(1) - O(1)            | 101.79(16)      |
| $Te(1) - O(2) \times 2$ | 2.1185(7)       | $O(1) - Te(1) - O(2) \times 2$ | 79.99(8)        |
| $Ti(1) - O(1) \times 6$ | 1.952(2)        | $O(1) - Te(1) - O(2) \times 2$ | 86.02(13)       |
|                         |                 | O(2) - Te(1) - O(2)            | 157.76(13)      |
|                         |                 | $O(1) - Ti(1) - O(1) \times 6$ | 88.19(9)        |
|                         |                 | $O(1) - Ti(1) - O(1) \times 6$ | 91.81(9)        |
|                         |                 | $O(1) - Ti(1) - O(1) \times 3$ | 180.0(2)        |

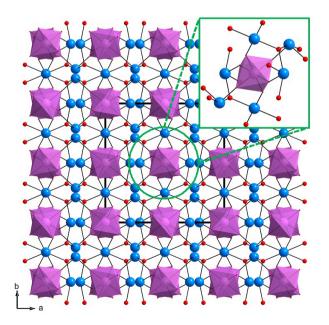



Fig. 2. Ball-and-stick representation of 3D structure of TiTe<sub>3</sub>O<sub>8</sub> in *ab*-plane, TiO<sub>6</sub> octahedron and Te<sub>3</sub>O<sub>8</sub> trimers by corner sharing of TeO<sub>4</sub> seesaw groups. The purple octahedrons represent TiO<sub>6</sub>, the blue balls Te atoms, and the red balls O atoms.

immobilization of radioactive wastes. Fundamental information on crystalline structures is helpful for understanding waste form stability and incongruent dissolution. The reported values of crystallographic information, bond distances, and bond angles for crystalline TiTe<sub>3</sub>O<sub>8</sub> are given in Tables 1-3 [16]. Fig. 1 shows that the powder X-ray diffraction pattern for TiTe<sub>3</sub>O<sub>8</sub> powder prepared through solidstate sintering matched the polycrystalline TiTe<sub>3</sub>O<sub>8</sub> (PDF#: 01-070-2439 in Fig. 1). No other impurities such as TiO<sub>2</sub> and TeO<sub>2</sub> phases were found in the sintered powders. As previous studies have shown [17], the crystal structure of TiTe<sub>3</sub>O<sub>8</sub> showed the centrosymmetric cubic space group, I a-3 (No. 206). It reveals 3D frameworks consisting of  $TiO_6$  octahedra and  $TeO_4$  polyhedra (see Fig. 2). The unique Ti4+ cation is connected to six oxygen atoms in an octahedral coordination environment. The asymmetric unit indicated the presence of unique Te4+ cations, showing an unsymmetrical coordination moiety resulting from the

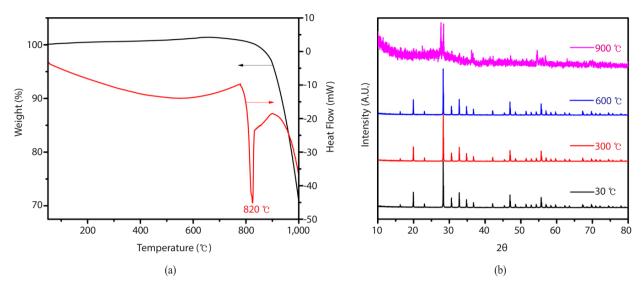



Fig. 3. Thermal behavior of TiTe<sub>3</sub>O<sub>8</sub> powders. (a) Thermogravimetric analysis (black line), differential scanning calorimetry analysis (red line) data, and (b) X-ray diffraction patterns of TiTe<sub>3</sub>O<sub>8</sub> powder treated at different temperatures for 10 min.

stereoactive lone pairs. The three distorted TeO<sub>4</sub> polyhedra share their corners through one O atom and form Te<sub>3</sub>O<sub>8</sub> trimers. The Ti<sup>4+</sup> cations in the center of the oxide octahedron are shared by two Te<sub>3</sub>O<sub>8</sub> trimers in an asymmetric coordination environment. Each Te<sub>3</sub>O<sub>8</sub> trimer is further connected by a TiO<sub>6</sub> octahedron along the [100] direction, thereby resulting in the formation of a 3D framework.

### 3.2 Thermal properties

TGA data showed that no significant weight loss of the synthesized TiTe<sub>3</sub>O<sub>8</sub> powders was observed until the temperature reached the melting point of TiTe<sub>3</sub>O<sub>8</sub>, as shown in Fig. 3(a). The weight loss started at approximately 840°C, where the decomposition of TiTe<sub>3</sub>O<sub>8</sub> took place. At 1,000°C, almost 30% of the total weight was evaporated from the TiTe<sub>3</sub>O<sub>8</sub> powder. In the DSC analysis, an endothermic peak was observed at 820°C, which indicates the melting of TiTe<sub>3</sub>O<sub>8</sub>. To investigate the chemical behavior introduced by the TeO<sub>2</sub> volatilization on the TiTe<sub>3</sub>O<sub>8</sub> melt, XRD patterns measured at room temperature were compared after heat treatments at different temperatures up to the volatilization temperature. Fig. 3(b) reveals that polycrystalline TiTe<sub>3</sub>O<sub>8</sub> maintains crystallinity up to 600°C. However, it is evident from the XRD pattern of the sample heat-treated at 900°C that an amorphous residue was formed after the selective evaporation of TeO<sub>2</sub> from the TiTe<sub>3</sub>O<sub>8</sub> melt. Small XRD peaks also appeared, corresponding to the polycrystalline TiO<sub>2</sub> phase (PDF#: 21-1276) as well as polycrystalline TeO<sub>2</sub>.

# 3.3 Chemical durability

Crystalline samples of pelletized  $TiTe_3O_8$  were subjected to a static leach test. The leaching rate of  $TiTe_3O_8$  was calculated using Eq. (2) from the normalized mass loss in Eq. (1) [12, 19].

$$NL_{Ti} = \frac{C_{Ti} \times V}{S \times f_{Ti}} \tag{1}$$

$$LR_{Ti} = \frac{NL_{Ti}}{t}$$
(2)

where  $NL_{Ti}$  is the normalized mass loss of Ti (g·m<sup>-2</sup>),  $LR_{Ti}$  is the leaching rate of Ti (g·m<sup>-2</sup>·d<sup>-1</sup>),  $C_{Ti}$  is the concentration of elemental Ti in the leaching solution (g·L<sup>-1</sup>), V is the volume of the leaching solution (L),  $f_{Ti}$  is the mass fraction of element Ti in the sample, S is the surface area

| Solid waste forms  | Leaching rate $(10^{-4} \text{ g} \cdot \text{m}^{-2} \cdot \text{d}^{-1})$ | Melting point (°C) |
|--------------------|-----------------------------------------------------------------------------|--------------------|
| Borosilicate glass | 14,000 (Si) [18]                                                            | 1,150 – 1,200 [6]  |
| SYNROC             | < 2 [20]                                                                    | ca. 1,370 [24]     |
| Perovskite         | < 1 [21]                                                                    | 1,970 [25]         |
| Hollandite         | 1,500 [22]                                                                  | > 1,400 [25]       |
| Pyrochlore         | 17 [23]                                                                     | ca. 1,800 [26]     |

Table 4. Leaching rate of constituent Ti and Si element in various waste forms

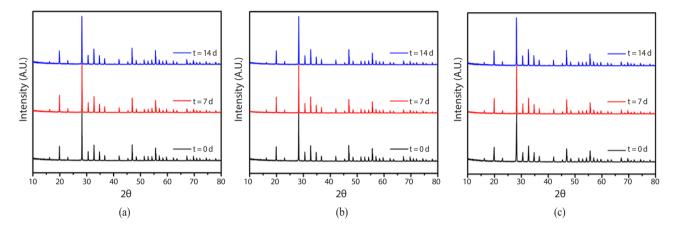



Fig. 4. XRD patterns of TiTe<sub>3</sub>O<sub>8</sub> after leaching in (a) 0.01 M HCl aqueous solution, (b) pure deionized water, and (c) 0.01 M NaOH aqueous solution over t = 7 d (red line), 14 d (blue line), and XRD pattern of the sample before leaching (black line) as a reference.

of the sample (m<sup>2</sup>), and *t* is the soaking time (d). All Ti concentrations in the leaching solutions of the 0.01 M HCl aqueous solution, pure deionized water, and 0.01 M NaOH aqueous solution were below the limit of detection (LOD). Based on the LOD values,  $LR_{Ti}$  under various leaching conditions in this study was less than the order of  $10^{-4}$  g·m<sup>-2</sup>·d<sup>-1</sup>. The leaching rates of other titanate-based solid waste forms are shown in Table 4. The chemical durability of TiTe<sub>3</sub>O<sub>8</sub> is comparable to that of known titanate-based solid waste forms, and is more stable than borosilicate glass, while the melting temperatures of TiTe<sub>3</sub>O<sub>8</sub>. Because the high processing temperature can cause volatilization of radionuclides in waste, a low temperature process is advantageous in field practices.

The leaching rate of pelletized TiTe<sub>3</sub>O<sub>8</sub> was low.

Therefore, no changes were expected in the surface and crystal structure. The XRD results in Fig. 4 confirm that the crystal structures of  $TiTe_3O_8$  remained unchanged after 7 and 14 d of leaching with highly acidic and alkaline aqueous solutions, as well as pure deionized water. SEM images also demonstrated that notable surface cracks or damages were not observed after leaching.

### 4. Conclusions

Pure crystalline  $TiTe_3O_8$  powder was synthesized through the solid-state sintering reaction of stoichiometric amounts of  $TiO_2$  and  $TeO_2$  powder. The two most important and fundamental properties required for the nuclear waste immobilization, thermal stability, and chemical durability of

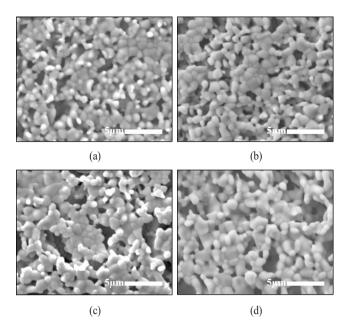



Fig. 5. SEM images of TiTe<sub>3</sub>O<sub>8</sub> (a) before leaching and after leaching in (b) 0.01 M HCl aqueous solution, (c) pure deionized water, and (d) 0.01 M NaOH aqueous solution over 14 d.

TiTe<sub>3</sub>O<sub>8</sub> were tested to examine the potential as a promising solid waste form. Although the TiTe<sub>3</sub>O<sub>8</sub> melt became unstable at around 840°C, a thermally stable TiO<sub>2</sub> residue was formed after the volatilization of TeO<sub>2</sub> from TiTe<sub>3</sub>O<sub>8</sub>. The low melting temperature of the TiTe<sub>3</sub>O<sub>8</sub> is advantageous in terms of cost, processability, and stability of wastes. The leaching rates of Ti in pelletized TiTe<sub>3</sub>O<sub>8</sub> crystals were comparable to the well-known solid waste forms even under severe acidic and basic conditions. Further studies are required to investigate other important performance characteristics such as the loading capacity of fission products, mechanical strength, and radiation resistance.

# Acknowledgements

This work was supported by the Nuclear Research and Development Program through the National Research Foundation of Korea (NRF-2017M2A8A5014754) funded by the Ministry of Science and ICT, Republic of Korea.

# REFERENCES

- R. Eliassen and M.I. Goldman, "Disposal of High-Level Wastes by Fixation in Fused Ceramics", in: Industrial Radioactive Waste Disposal, Vol. 3, R.L. Doan, ed., 1966-1979, U.S. Government Printing Office, Washington, D.C. (1959).
- [2] L.P. Hatch, "Ultimate Disposal of Radioactive Wastes", Am. Sci., 41(3), 410-421 (1953).
- [3] D.R. Clarke, "Ceramic Materials for the Immobilization of Nuclear Waste", Annu. Rev. Mater. Sci., 13(1), 191-218 (1983).
- [4] C.W. Kim and B.G. Lee, "Feasibility Study on Vitrification for Rare Earth Wastes of PyroGreen Process", J. Korean Radioact. Waste Soc., 11(1), 1-9 (2013).
- [5] D.R. Clarke, "Preferential Dissolution of an Intergranular Amorphous Phase in a Nuclear Waste Ceramic", J. Am. Ceram. Soc., 64(6), c89-c90 (1981).
- [6] National Research Council, Waste Forms Technology and Performance: Final Report, The National Academies Press, Washington D.C. (2011).
- [7] A.I. Orlova and M.I. Ojovan, "Ceramic Mineral Wasteforms for Nuclear Waste Immobilization", Materials, 12(16), (2019).
- [8] G.R. Lumpkin, "Ceramic Waste Forms for Actinides", Elements, 2(6), 365-372 (2006).
- [9] M.L. Carter, E.R. Vance, D.R.G. Mitchell, J. V Hanna, Z. Zhang, and E. Loi, "Fabrication, Characterization, and Leach Testing of Hollandite, (Ba,Cs)(Al,Ti)<sub>2</sub>Ti<sub>6</sub>O<sub>16</sub>", J. Mater. Res., 17(10), 2578-2589 (2002).
- [10] Y. Zhang, M.W.A. Stewart, H. Li, M.L. Carter, E.R. Vance, and S. Moricca, "Zirconolite-rich Titanate Ceramics for Immobilisation of Actinides - Waste Form / HIP Can Interactions and Chemical Durability", J. Nucl. Mater., 395(1-3), 69-74 (2009).
- [11] T.S. Livshits, J. Zhang, S.V. Yudintsev, and S.V. Stefanovsky, "New Titanate Matrices for Immobilization of REE-actinide High-level Waste", J. Radioanal. Nucl. Chem., 304(1), 47-52 (2015).

- [12] ASTM C1220-17, "Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste" (2017).
- [13] I. Ayed, S. Elleuch, A. Ben Ahmed, and A. Kabadou,
   "Effect of Erbium Doping on Vibrational and Optical Properties of TiTe<sub>3</sub>O<sub>8</sub>", J. Alloys Compd., 791, 1088-1097 (2019).
- [14] G. Nabila, R. Karray, J. Laval, A. Kabadou, and B.S. Abdelhamid, "X-ray Powder Diffraction and Raman Vibrational Study of New Doped Compound TiTe<sub>3</sub>O<sub>8</sub>:Ce", J. Mater. Environ. Sci., 6(4), 989-996 (2015).
- [15] W. Ben Aribia, M. Loukil, A. Kabadou, and A. Ben Salah, "X-ray Powder Diffraction Study of Sn<sub>0.59</sub>Ti<sub>0.41</sub> Te<sub>3</sub>O<sub>8</sub>", Powder Diffr., 23(3), 228-231 (2008).
- [16] W. Lu, Z. Gao, Q. Wu, X. Tian, Y. Sun, Y. Liu, and X. Tao, "Tailored Fabrication of a Prospective Acousto-optic Crystal TiTe<sub>3</sub>O<sub>8</sub> Endowed with High Performance", J. Mater. Chem. C, 6(10), 2443-2451 (2018).
- [17] J. Galy, G. Meunier, S. Andersson, and A. Åström,
  "Stéréochimie des Eléments Comportant des Paires Non Liées: Ge (II), As (III), Se (IV), Br (V), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III)
  (Oxydes, Fluorures et Oxyfluorures)", J. Solid State Chem., 13(1), 142-159 (1975).
- [18] D.M. Strachan, R.P. Turcotte, and B.O. Barnes, "MCC-1: A Standard Leach Test for Nuclear Waste Forms", Nucl. Technol., 56(2), 306-312 (1982).
- [19] W.A. Ross, D.M. Strachan, R.P. Turcotte, and J.H.J. Westsik. Materials Characterization Center Workshop on Leaching of Radioactive Waste Forms. Summary Report, Battelle Pacific Northwest Laboratory Report, DOE-PNL-3318 (1980).
- [20] D.M. Levins and R.S.C. Smart, "Effects of Acidification and Complexation from Radiolytic Reactions on Leach Rates of SYNROC C and Nuclear Waste Glass", Nature, 309, 776-778 (1984).
- [21] R.G. Dosch, "Processing Effects on the Behavior of Titanate Waste Forms in Aqueous Solutions", Mater.

Res. Soc. Symp. Proc., 6, 15-22 (1982).

- [22] N. Kamel, F. Aouchiche, D. Moudir, Y. Mouheb, and S. Kamariz, "Study of the Chemical Durability of a Hollandite Mineral Leached in both Static and Dynamic Conditions", Environ. Res. Technol., 2(2), 85-92 (2019).
- [23] Y.F. Volkov, S.V. Tomilin, A.N. Lukinykh, A.A. Lizin, A.A. Elesin, A.G. Yakovenko, V.I. Spiryakov, V.I. Konovalov, V.M. Chistyakov, A.V Bychkov, and L.J. Jardine, "Titanate Ceramics with Pyrochlore Structure as a Matrix for Immobilization of Excess Weapons-Grade Plutonium: II. Hydrolytic Resistance", Radiochemistry, 46(4), 358-363 (2004).
- [24] A.E. Ringwood, V.M. Oversby, S.E. Kesson, W. Sinclair, N. Ware, W. Hibberson, and A. Major, "Immobilization of High-level Nuclear Reactor Wastes in SYNROC: A Current Appraisal", Nucl. Chem. Waste Manage., 2(4), 287-305 (1981).
- [25] A.E. Ringwood, Safe Disposal of High Level Nuclear Reactor Wastes: a New Strategy, Australian National University Press, Canberra, Australia (1978).
- [26] C.A. Taylor, "Helium Diffusion and Accumulation in Gd<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> and Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>", Ph.D. Dissertation, University of Tennessee (2016).