DOI QR코드

DOI QR Code

유동-집속 생성기의 병렬화를 통한 에멀젼 생산속도 향상

Enhancing Production Rate of Emulsion via Parallelization of Flow-Focusing Generators

  • 정헌호 (전남대학교 화공생명공학과)
  • Jeong, Heon-Ho (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 투고 : 2018.07.10
  • 심사 : 2018.08.31
  • 발행 : 2018.10.01

초록

액적-기반 미세유체장치는 물질 합성 및 초고속 대용량 스크리닝 등 다양한 응용분야에서 변형 가능한 새로운 접근법을 이끌어 냈다. 그러나 단일의 액적생성기를 이용한 액적의 생성 속도가 매우 낮기 때문에 이를 상용화 하기 위해서는 생산속도를 높이기 위한 노력이 필요하다. 본 연구는 단일의 유동-집속 생성기를 병렬로 연결하여 단분산성 액적의 생성 속도를 높이는 방법에 관한 것이다. 이러한 액적생성기를 갖는 미세유체장치를 제작하기 위해 본 연구에서는 양면 임프린팅 방법을 이용하여 단층 엘라스토머 조각에3차원의 마이크로 채널을 갖는 3D 모놀리식 탄성중합체 장치(monolithic elastomer device, 3D MED)를 제작 할 수 있다. 이렇게 제작된 8개의 액적생성기가 연결된 3D MED를 이용하여 연속상과 분산상의 유체를 조절하여 단분산성 액적의 형성속도가 향상되었음을 증명하였다. 따라서 본 미세유체시스템을 사용하여 다양한 재료 또는 세포들을 함유하는 단분산성 액적을 형성하여 마이크로입자 제조 및 스크리닝 시스템과 같은 넓은 분야에 활용될 수 있을 것으로 기대된다.

Droplet-based microfluidic device has led to transformational new approaches in various applications including materials synthesis and high-throughput screening. However, efforts are required to enhance the production rate to industrial scale because of low production rate in a single droplet generator. In here, we present a method for enhancing production rate of monodisperse droplets via parallelization of flow-focusing generators. For this, we fabricated a three-dimensional monolithic elastomer device (3D MED) that has the 3D channel structures in a single layer, using a double-sided imprinting method. We demonstrated that the production rate of monodisperse droplet is increased by controlling the flow rate of continuous and dispersed phases in 3D MED with 8 droplet generators. Thus, we anticipate that this microfluidic system will be used in wide area including microparticle synthesis and screening system via encapsulation of various materials and cells in monodisperse droplets.

키워드

참고문헌

  1. Xu, Q. B., Hashimoto, M., Dang, T. T., Hoare, T., Kohane, D. S., Whitesides, G. M., Langer, R. and Anderson, D. G., "Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-Focusing Device for Controlled Drug Delivery," Small, 5(13), 1575-1581(2009). https://doi.org/10.1002/smll.200801855
  2. Marre, S. and Jensen, K. F., "Synthesis of Micro and Nanostructures in Microfluidic Systems," Chem. Soc. Rev., 39(3), 1183-1202(2010). https://doi.org/10.1039/b821324k
  3. Jeong, H. H., Noh, Y. M., Jang, S. C. and Lee, C. S., "Droplet-based Microfluidic Device for High-throughput Screening," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 52(2), 141-153(2014). https://doi.org/10.9713/kcer.2014.52.2.141
  4. Shestopalov, I., Tice, J. D. and Ismagilov, R. F., "Multi-step Synthesis of Nanoparticles Performed on Millisecond Time Scale in a Microfluidic Droplet-based System," Lab Chip, 4(4), 316-321 (2004). https://doi.org/10.1039/b403378g
  5. Theberge, A. B., Courtois, F., Schaerli, Y., Fischlechner, M., Abell, C., Hollfelder, F. and Huck, W. T. S., "Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology," Angew. Chem. Int. Ed., 49(34), 5846-5868(2010). https://doi.org/10.1002/anie.200906653
  6. Shim, T. S. and Kim, J. M., "Soft-, Shape Changing Materials Toward Physicochemically Powered Actuators," Korean J. Chem. Eng., 34(9), 2355-2365(2017). https://doi.org/10.1007/s11814-017-0199-6
  7. Joscelyne, S. M. and Tragardh, G., "Membrane Emulsification - a Literature Review," J. Membrane Sci., 169(1), 107-117(2000). https://doi.org/10.1016/S0376-7388(99)00334-8
  8. Tetradis-Meris, G., Rossetti, D., de Torres, C. P., Cao, R., Lian, G. P. and Janes, R., "Novel Parallel Integration of Microfluidic Device Network for Emulsion Formation," Ind. Eng. Chem. Res., 48(19), 8881-8889(2009). https://doi.org/10.1021/ie900165b
  9. Al-Rawashdeh, M., Yu, F., Nijhuis, T. A., Rebrov, E. V., Hessel, V. and Schouten, J. C., "Numbered-up Gas-liquid Micro/milli Channels Reactor with Modular Flow Distributor," Chem. Eng. J., 207, 645-655(2012).
  10. Bardin, D., Kendall, M. R., Dayton, P. A. and Lee, A. P., "Parallel Generation of Uniform Fine Droplets at Hundreds of Kilohertz in a Flow-focusing Module," Biomicrofluidics, 7(3), 034112(2013). https://doi.org/10.1063/1.4811276
  11. Jeong, H. H., Yadavali, S., Issadore, D. and Lee, D., "Liter-scale Production of Uniform Gas Bubbles via Parallelization of Flow- focusing Generators," Lab Chip, 17(15), 2667-2673(2017). https://doi.org/10.1039/C7LC00295E
  12. Riche, C. T., Roberts, E. J., Gupta, M., Brutchey, R. L. and Malmstadt, N., "Flow Invariant Droplet Formation for Stable Parallel Microreactors," Nat. Commun., 7, 10780(2016). https://doi.org/10.1038/ncomms10780
  13. Jeong, H. H., Issadore, D. and Lee, D., "Recent Developments in Scale-up of Microfluidic Emulsion Generation via Parallelization," Korean J. Chem. Eng., 33(6), 1757-1766(2016). https://doi.org/10.1007/s11814-016-0041-6
  14. Romanowsky, M. B., Abate, A. R., Rotem, A., Holtze, C. and Weitz, D. A., "High Throughput Production of Single Core Double Emulsions in a Parallelized Microfluidic Device," Lab Chip, 12(4), 802-807(2012). https://doi.org/10.1039/c2lc21033a
  15. Jeong, H. H., Yelleswarapu, V. R., Yadavali, S., Issadore, D. and Lee, D., "Kilo-scale Droplet Generation in Three-dimensional Monolithic Elastomer Device (3D MED)," Lab Chip, 15(23), 4387-4392(2015). https://doi.org/10.1039/C5LC01025J
  16. Lee, B. L., Jin, S. H., Jeong, S. G., Kang, K. K., Lee, C. S., "Surface Modification of PDMS for Hydrophilic and Antifouling Surface Using PEO-PPO-PEO Block Copolymer," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 55(6), 791-797(2017). https://doi.org/10.9713/KCER.2017.55.6.791
  17. Takeuchi, S., Garstecki, P., Weibel, D. B. and Whitesides, G. M., "An Axisymmetric Flow-focusing Microfluidic Device," Adv. Mater., 17(8), 1067-1072(2005). https://doi.org/10.1002/adma.200401738
  18. Lee, W., Walker, L. M. and Anna, S. L., "Role of Geometry and Fluid Properties in Droplet and Thread Formation Processes in Planar Flow Focusing," Phys. Fluids, 21(3), 032103(2009). https://doi.org/10.1063/1.3081407
  19. Yobas, L., Martens, S., Ong, W. L. and Ranganathan, N., "High-per- formance Flow-focusing Geometry for Spontaneous Generation of Monodispersed Droplets," Lab Chip, 6(8), 1073-1079(2006). https://doi.org/10.1039/b602240e