• Title/Summary/Keyword: low conductivity

Search Result 1,732, Processing Time 0.028 seconds

Effect of Seed Coating with Polymers on Seed Vigour and Seedling Stand in Direct Seeded Rice

  • Song, Dong-Seog;Lee, Sheong-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.214-222
    • /
    • 1998
  • These experiments were conducted to investigate water uptake, electrical conductivity, germination percentage, seedling growth, and seedling establishment rate in direct seeding cultivation of rice. The rice seeds of six japonica type varieties were coated with 12 kinds of polymers in a standard concentration of 0.2% using seed coating machine. The water absorption of the polymer-coated seeds under saturation conditions was not different among varieties, and was the highest in kulcel, maltrin, and waterlock on the polymer-coated seeds. The electrical conductivity with waterlock (55.0 $\mu scm^{-1}g^{-1}$) was higher than the control plot (45.6 $\mu scm^{-1}g^{-1}$) and other treatments. The germination of the polymer-coated seeds was 95.9% at control plot, 92.7% at low temperature and 35.7% at high temperature. The total dry weight of seed decreased in the order of low temperature, control plot, and high temperature, and was effective in pvp (polyvinyl pyrrolidone), opadry, and sacrust. The seedling establishment rate in direct seeding cultivation ranged from 74.9 to 81.0% in flooded paddy surface, and ranged from 64.7 to 76.6% in dry paddy. In both cases, it decreased in the order of early, medium and medium-late varieties, but was enhanced in daran 8600, sepirect, and sacrust. According to this study the recommended polymers for direct seeding cultivation of rice are daran 8600, sepirect, and sacrust.

  • PDF

Fabrication of YSZ/GDC Bilayer Electrolyte Thin Film for Solid Oxide Fuel Cells

  • Yang, Seon-Ho;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.189-192
    • /
    • 2014
  • Yttria-stablized zirconia (YSZ) is the most commonly used electrolyte material, but the reduction in working temperature leads to insufficient ionic conductivity. Ceria based electrolytes (GDC) are more attractive in terms of conductivity at low temperature, but these materials are well known to be reducible at very low oxygen partial pressure. The reduction of electrolyte resistivity is necessary to overcome cell performance losses. So, thin YSZ/GDC bilayer technology seems suitable for decreasing the electrolyte resistance at lower operating temperatures. Bilayer electrolytes composed of a galdolinium-doped $CeO_2$ ($Ce_{0.9}Gd_{0.1}O_{1.95}$, GDC) layer and yttria-stabilized $ZrO_2$ (YSZ) layer with various thicknesses were deposited by RF sputtering and E-beam evaporation. The bilayer electrolytes were deposited between porous Ni-GDC anode and LSM cathode for anode-supported single cells. Thin film structure and surface morphology were investigated by X-ray diffraction (XRD), using $CuK{\alpha}$-radiation in the range of 2ce morphol$^{\circ}C$. The XRD patterns exhibit a well-formed cubic fluorite structure, and sharp lines of XRD peaks can be observed, which indicate a single solid solution. The morphology and size of the prepared particles were investigated by field-emission scanning electron microscopy (FE-SEM). The performance of the cells was evaluated over $500{\sim}800^{\circ}C$, using humidified hydrogen as fuel, and air as oxidant.

Manufacturing and characteristics of PAN-based composite carbon fibers containing cellulose particles

  • Yang, Jee-Woo;Jin, Da Young;Lee, Ji Eun;Lee, Seung Goo;Park, Won Ho
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2015
  • This study fabricated low thermal conductive polyacrylonitrile (PAN)-based carbon fibers containing cellulose particles while maintaining their mechanical properties. The high thermal conductivity of carbon fibers limits their application as a high temperature insulator in various systems such as an insulator for propulsion parts in aerospace or missile systems. By controlling process parameters such as the heat treatment temperature of the cellulose particles and the amount of cellulose added, the thermal and mechanical properties of the PAN-based carbon fibers were investigated. The results show that it is possible to manufacture composite carbon fibers with low thermal conductivity. That is, thermal conductivities were reduced by the cellulose particles in the PAN based carbon fibers while at the same time, the tensile strength loss was minimized, and the tensile modulus increased.

DNA Concentration Effect of Various Hydroxide Compounds on Stacking in Capillary Electrophoresis

  • Shin, Ah-Ram;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4316-4320
    • /
    • 2011
  • The effects of various hydroxide compounds on base stacking (BS) were investigated for pre-concentration of DNA molecules in capillary electrophoresis (CE). In BS, hydroxide ions ($OH^-$) were electrokinetically introduced after DNA sample injection. A neutralization reaction occurred between the $OH^-$ and $Tris^+$ of the running buffer, which resulted in a zone of lower conductivity. Within the low conductivity zone of the high electric field, the DNA molecules moved more rapidly and were concentrated in front of the low conductivity zone. At the same BS conditions of CE, the enhanced sensitivity of the DNA samples was dependent on the kind of multivalent cations in the hydroxide compounds. Except for LiOH, the hydroxide compounds with monovalent cations showed more effective BS than those with divalent cations because of solubility, ionic strength and electronegativity. The order of hydroxide compounds that enhance the detection sensitivity of DNA molecules was as follows: NaOH > $NH_4OH$ > KOH > $Ba(OH)_2$ > $Sr(OH)_2$ > LiOH > $Ca(OH)_2$ > $Mg(OH)_2$. $NH_4OH$, KOH and $Ba(OH)_2$ proved to be efficient hydroxide compounds to use as effective BS reagents in CE instead of NaOH.

Terbium and Tungsten Co-doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells

  • Jung, Doh Won;Lee, Kang Taek;Wachsman, Eric D.
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.260-264
    • /
    • 2014
  • We developed a novel double dopant bismuth oxide system with Tb and W. When Tb was doped as a single dopant, a Tb dopant concentration more than 20 mol% was required to stabilize bismuth oxides with a high conductivity cubic structure. High temperature XRD analysis of 25 mol% Tb-doped bismuth oxide (25TSB) confirmed that the cubic structure of 25TSB was retained from room temperature to $700^{\circ}C$ with increase in the lattice parameter. On the other hand, we achieved the stabilization of high temperature cubic phase with a total dopant concentration as low as ~12 mol% with 8 mol% Tb and 4 mol% W double dopants (8T4WSB). Moreover, the measured ionic conductivity of 10T5WSB was much higher than 25TSB, thus demonstrating the feasibility of the double dopant strategy to develop stabilized bismuth oxide systems with higher oxygen ion conductivity for the application of SOFC electrolytes at reduced temperature. In addition, we investigated the long-term stability of TSB and TWSB electrolytes.

Microstructure and Electrical Conductivity of Cu-16 at % Ag Microcomposite (Cu-16 at % Ag 미세복합재료의 미세구조와 전도도)

  • Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.569-576
    • /
    • 1999
  • In this study, the effect of the microstructural evolution on the electrical of Cu-Ag microcomposite was investigated. The nature of interfaces between silver filaments and Cu matrix may have pronounced effects on the physical properties of Cu-Ag filamentary microcomposites, little is known about these interfaces. In heavily drawn Cu-Ag filamentary microcomposities, the microstructure is too fine and the interfacial area is too large to maintsin a stable internal dislocation structure because of closely spaced filaments. Rather, most dislocations are thought to be gradually absorbed at the interfaces as the draw ratio increases. The mechanical and electrical properties of Cu-Ag filamentary microcomposites wires were also examined and correlated with the microstructural change caused by thermomechanical treatments. The study on the electrical conductivity combined to resistivity in Cu-Ag filamentary microcomposites and the rapid increase of the electrical conductivity at high annealing temperatures is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities at 295K($\rho$\ulcorner/$\rho$\ulcorner) in as-drawn Cu-Ag microcomposites can also be explained by the contribution of the interface scattering.

  • PDF

Optimized Thermoelectric Properties in Zn-doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • Magnesium-antimonide is a well-known zintl phase thermoelectric material with low band gap energy, earth-abundance and characteristic electron-crystal phonon-glass properties. The nominal composition Mg3.8-xZnxSb2 (0.00 ≤ x ≤ 0.02) was synthesized by controlled melting and subsequent vacuum hot pressing method. To investigate phase development and surface morphology during the process, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out. It should be noted that an additional 16 at. % Mg must be added to the system to compensate for Mg loss during the melting process. This study evaluated the thermoelectric properties of the material in terms of Seebeck coefficient, electrical conductivity and thermal conductivity from the low to high temperature regime. The results demonstrated that substituting Zn at Mg sites increased electrical conductivity without significantly affecting the Seebeck coefficient. The maximal dimensionless figure of merit achieved was 0.30 for x = 0.01 at 855 K which is 30% greater than the intrinsic value. Electronic flow properties were also evaluated and discussed to explain the carrier transport mechanism involved in the thermoelectric properties of this alloy system.

The Synthesis of Lithium Lanthanum Titanium Oxide for Solid Electrolyte via Ultrasonic Spray Pyrolysis (초음파 분무 열분해법을 이용한 고체전해질용 Lithium Lanthanum Titanium Oxide 제조)

  • Jaeseok, Roh;MinHo, Yang;Kun-Jae, Lee
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.485-491
    • /
    • 2022
  • Lithium lanthanum titanium oxide (LLTO) is a promising ceramic electrolyte because of its high ionic conductivity at room temperature, low electrical conductivity, and outstanding physical properties. Several routes for the synthesis of bulk LLTO are known, in particular, solid-state synthesis and sol-gel method. However, the extremely low ionic conductivity of LLTO at grain boundaries is one of the major problems for practical applications. To diminish the grain boundary effect, the structure of LLTO is tuned to nanoscale morphology with structures of different dimensionalities (0D spheres, and 1D tubes and wires); this strategy has great potential to enhance the ion conduction by intensifying Li diffusion and minimizing the grain boundary resistance. Therefore, in this work, 0D spherical LLTO is synthesized using ultrasonic spray pyrolysis (USP). The USP method primarily yields spherical particles from the droplets generated by ultrasonic waves passed through several heating zones. LLTO is synthesized using USP, and the effects of each precursor and their mechanisms as well as synthesis parameters are analyzed and discussed to optimize the synthesis. The phase structure of the obtained materials is analyzed using X-ray diffraction, and their morphology and particle size are analyzed using field-emission scanning electron microscopy.

Measurement of Optogalvanic Signal in Hollow Cathode Discharge Tube (Hollow Cathode Discharge Tube에서의 광검류 신호 측정)

  • Lee, Jun-Hoi;Yoon, Man-Young;Kim, Song-Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.874-877
    • /
    • 2002
  • The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF

Electrical Conductivity of Polypyrrole/Copolyester Composite Films. 2. Composite Films Prepared from Copolyester-$FeCl_3$ Surface Absorption

  • Lee, Seong-Mo;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.53-56
    • /
    • 1998
  • Polypyrrole (PPy) is regarded as one of the most Promising intrinsically or naturally conductive polymer for practical applications due to its relatively high electrical conductivity, environmental stability and low toxicity. The typical PPy, which is insoluble and infusible, exhibits poor processability and lacks essential mechanical properties. A number of papers have concerned the efforts to overcome these drawbacks. (omitted)

  • PDF