Manufacturing and characteristics of PAN-based composite carbon fibers containing cellulose particles |
Yang, Jee-Woo
(Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Jin, Da Young (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) Lee, Ji Eun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) Lee, Seung Goo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) Park, Won Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) |
1 | Yang JW, Won JS, Jin DY, Lee JE, Park WH, Lee SG. Preparation of PAN spinning solution with fine dispersion of cellulose microparticles. Adv Mater Sci Eng, 2015, 534241 (2015). http://dx.doi.org/10.1155/2015/534241. DOI |
2 | ASTM International. ASTM D3822-07: Standard Test Method for Tensile Properties of Single Textile Fibers (2007). |
3 | Xue Y, Liu J, Liang J. Kinetic study of the dehydrogenation reaction in polyacrylonitrile-based carbon fiber precursors during thermal stabilization. J Appl Polym Sci, 127, 237 (2013). http://dx.doi.org/10.1002/app.37878. DOI |
4 | Morita K, Murata Y, Ishitani A, Murayama K, Nakajima A. Characterization of commercially available PAN-based carbon fiber. Pure Appl Chem, 58, 455 (1986). |
5 | Peebles LH. Carbon Fibers: Formation, Structure, and Properties, CRC Press, Boca Raton, FL (1995). |
6 | Donnet JB, Bansal RC. Carbon Fibers. 2nd ed., Marcel Dekker, New York, NY (1990). |
7 | Kepple KL, Sanborn GP, Lacasse PA, Gruenberg KM, Ready WJ. Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon, 46, 2026 (2008). http://dx.doi.org/10.1016/j.carbon.2008.08.010. DOI |
8 | Godara A, Mezzo L, Luizi F, Warrier A, Lomov SV, van Vuure AW, Gorbatikh L, Moldenaers P, Verpoest I. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon, 47, 2914 (2009). http://dx.doi.org/10.1016/j.carbon.2009.06.039. DOI |
9 | Qin W, Vautard F, Drzal LT, Yu J. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase. Composites B, 69, 335 (2015). http://dx.doi.org/10.1016/j.compositesb.2014.10.014. DOI |
10 | Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K. Microstructure of mesophase pitch-based carbon fiber and its control. Carbon, 34, 941 (1996). http://dx.doi.org/10.1016/0008-6223(95)00172-7. DOI |
11 | Hawthorne HM, Baker C, Bentall RH, Linger KR. High strength, high modulus graphite fibres from pitch. Nature, 227, 946 (1970). http://dx.doi.org/10.1038/227946a0. DOI |
12 | Endo M. Grown carbon fibers in the vapor phase. Chem Technol, 18, 568 (1988). |
13 | Pradere C, Batsale JC, Goyhénèche JM, Pailler R, Dilhaire S. Thermal properties of carbon fibers at very high temperature. Carbon, 47, 737 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.015. DOI |
14 | Chung DDL. Carbon Fiber Composites, Butterworth-Heinemann, Boston, MA (1994). |
15 | Choi DW, Yoon SB, Cho CW, Park JK. Effect of additional heattreatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers. Carbon Lett, 12, 223 (2011). http://dx.doi.org/10.5714/CL.2911.12.4.223. DOI |
16 | Sharma SP, Lakkad SC. Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites. Surf Coat Technol, 205, 350 (2010). http://dx.doi.org/10.1016/j.surfcoat.2010.06.055. DOI |
17 | Oberlin A, Guigon M. The structure of carbon fibers. In: Bunsell AR, ed. Fibre Reinforcements for Composite Materials, Elsevier, New York, NY, 149 (1988). |
18 | Savage GM. Carbon-Carbon Composites, Chapman and Hall, London, 277 (1993). |
19 | Sharma SP, Lakkad SC. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites. Composites A, 42, 8 (2011). http://dx.doi.org/10.1016/j.compositesa.2010.09.008. DOI |
20 | Boroujeni AY, Tehrani M, Nelson AJ, Al-Haik M. Hybrid carbon nanotube-carbon fiber composites with improved in-plane mechanical properties. Composites B, 66, 475 (2014). http://dx.doi.org/10.1016/j.compositesb.2014.06.010. DOI |
21 | Chae HG, Sreekumar TV, Uchida T, Kumar S. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer, 46, 10925 (2005). http://dx.doi.org/10.1016/j.polymer.2005.08.092. DOI |