DOI QR코드

DOI QR Code

Terbium and Tungsten Co-doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells

  • Jung, Doh Won (Samsung Advanced Institute of Technology) ;
  • Lee, Kang Taek (Department of Energy Systems Engineering, DGIST (DaeguGyeongbuk Institute Science and Technology)) ;
  • Wachsman, Eric D. (University of Maryland Energy Research Center, University of Maryland)
  • Received : 2014.06.12
  • Accepted : 2014.06.30
  • Published : 2014.07.31

Abstract

We developed a novel double dopant bismuth oxide system with Tb and W. When Tb was doped as a single dopant, a Tb dopant concentration more than 20 mol% was required to stabilize bismuth oxides with a high conductivity cubic structure. High temperature XRD analysis of 25 mol% Tb-doped bismuth oxide (25TSB) confirmed that the cubic structure of 25TSB was retained from room temperature to $700^{\circ}C$ with increase in the lattice parameter. On the other hand, we achieved the stabilization of high temperature cubic phase with a total dopant concentration as low as ~12 mol% with 8 mol% Tb and 4 mol% W double dopants (8T4WSB). Moreover, the measured ionic conductivity of 10T5WSB was much higher than 25TSB, thus demonstrating the feasibility of the double dopant strategy to develop stabilized bismuth oxide systems with higher oxygen ion conductivity for the application of SOFC electrolytes at reduced temperature. In addition, we investigated the long-term stability of TSB and TWSB electrolytes.

Keywords

References

  1. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  2. B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001). https://doi.org/10.1038/35104620
  3. K. T. Lee, H. S. Yoon, and E. D. Wachsman, "The Evolution of Low Temperature Solid Oxide Fuel Cells," J. Mater. Res., 27 [16] 2063-78 (2012). https://doi.org/10.1557/jmr.2012.194
  4. E. D. Wachsman, C. A. Marlowe, and K. T. Lee, "Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy," Energy Environ. Sci., 5 [2] 5498-509 (2012). https://doi.org/10.1039/c1ee02445k
  5. S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 [16] 4791-843 (2004). https://doi.org/10.1021/cr020724o
  6. S. Boyapati, E. D. Wachsman, and B. C. Chakoumakos, "Neutron Diffraction Study of Occupancy and Positional Order of Oxygen Ions in Phase Stabilized Cubic Bismuth Oxides," Solid State Ionics, 138 [3-4] 293-304 (2001). https://doi.org/10.1016/S0167-2738(00)00792-X
  7. E. D. Wachsman, "Effect of Oxygen Sublattice Order on Conductivity in Highly Defective Fluorite Oxides," J. Eur. Ceram. Soc., 24 [6] 1281-85 (2004). https://doi.org/10.1016/S0955-2219(03)00509-0
  8. N. X. Jiang, E. D. Wachsman, and S. H. Jung, "A Higher Conductivity $Bi_2O_3$-based Electrolyte," Solid State Ionics, 150 [3-4] 347-53 (2002). https://doi.org/10.1016/S0167-2738(02)00291-6
  9. E. D. Wachsman, S. Boyapati, and N. Jiang, "Effect of Dopant Polarizability on Oxygen Sublattice Order in Phase-Stable Cubic Bismuth Oxide," Ionics, 7 [1-2] 1-6 (2001). https://doi.org/10.1007/BF02375460
  10. N. Q. Minh, "Ceramic Fuel-cells," J. Am. Ceram. Soc.,76 [3] 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  11. T. Takahashi, T. Esaka, and H. Iwahara, "Electrical-conduction in Sintered Oxides of System $Bi_2O_3$-BaO," J. Solid State Chem., 16 [3-4], 317-23 (1976). https://doi.org/10.1016/0022-4596(76)90047-5
  12. T. Takahashi, T. Esaka, and H. Iwahara, "High Oxide Ion Conduction in Sintered Oxides of System $Bi_2O_3$-$Gd_2O_3$," J Appl. Electrochem., 5 [3] 197-202 (1975). https://doi.org/10.1007/BF01637269
  13. M. J. Verkerk and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3-Dy_2O_3$ System," J. Electrochem. Soc., 128 [1] 75-82 (1981). https://doi.org/10.1149/1.2127391
  14. M. J. Verkerk, K. Keizer, and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3$-$Er_2O_3$ System," J. Appl. Electrochem., 10 [1] 81-90 (1980). https://doi.org/10.1007/BF00937342
  15. D. Mercurio, M. Elfarissi, B. Frit, J. M. Reau, and J. Senegas, "Fast Ionic-conduction in New Oxide Materials of the $Bi_2O_3$-$Ln_2O_3$-$TeO_2$ Systems (Ln = La, Sm, Gd, Er)," Solid State Ionics, 39 [3-4] 297-304 (1990). https://doi.org/10.1016/0167-2738(90)90410-S
  16. G. Y. Meng, C. S. Chen, X. Han, P. H. Yang, and D. K. Peng, "Conductivity Of $Bi_2O_3$-based Oxide Ion Conductors With Double Stabilizers," Solid State Ionics, 28 [29-30] 533-38 (1988).
  17. D. W. Jung, K. L. Duncan, and E. D. Wachsman, "Effect of Total Dopant Concentration and Dopant Ratio on Conductivity of $(DyO_{1.5})_x$-$(WO_3)_Y$-$(BiO_{1.5})_{1-x-y}$," Acta Mater., 58 [2] 355-63 (2010). https://doi.org/10.1016/j.actamat.2009.08.072
  18. D. W. Jung, J. C. Nino, K. L. Duncan, S. R. Bishop, and E. D. Wachsman, "Enhanced Long-term Stability of Bismuth Oxide-based Electrolytes for Operation at 500$500^{\circ}C$," Ionics, 16 [2] 97-103 (2010). https://doi.org/10.1007/s11581-009-0402-9
  19. D. W. Jung, K. L. Duncan, M. A. Camaratta, K. T. Lee, J. C. Nino, and E. D. Wachsman, "Effect of Annealing Temperature and Dopant Concentration on the Conductivity Behavior in $(DyO_{1.5})_x$-$(WO_3)_y$-$(BiO_{1.5})_{1-x-y}$," J. Am. Ceram. Soc., 93 [5] 1384-91 (2010).
  20. T. Esaka and H. Iwahara, "Oxide Ion and Electron Mixed Conduction in The Fluorite-type Cubic Solid-solution in The System $Bi_2O_3$-$Tb_2O_{3.5}$," J. Appl. Electrochem., 15 [3] 447-51 (1985). https://doi.org/10.1007/BF00615998
  21. J. B. Nelson and D. P. Riley, "An Experimental Investigation of Extrapolation Methods in The Derivation of Accurate Unit-cell Dimensions of Crystals," P. Phys. Soc. Lond., 57 [321] 160-77 (1945). https://doi.org/10.1088/0959-5309/57/3/302
  22. M. J. Verkerk and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3$-$Ln_2O_3$ System," Solid State Ionics, 3-4 463-67 (1981). https://doi.org/10.1016/0167-2738(81)90133-8

Cited by

  1. Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C vol.29, pp.48, 2017, https://doi.org/10.1002/adma.201700132
  2. Dysprosium and Gadolinium Double Doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells vol.163, pp.5, 2016, https://doi.org/10.1149/2.0951605jes
  3. Morphology and Structural Stability of Bismuth-Gadolinium Co-Doped Ceria Electrolyte Nanopowders vol.7, pp.10, 2019, https://doi.org/10.3390/inorganics7100118
  4. Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review vol.14, pp.5, 2014, https://doi.org/10.3390/en14051280
  5. Understanding redox cycling behavior of Ni-YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis vol.58, pp.5, 2021, https://doi.org/10.1007/s43207-021-00136-2