References
- E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
- B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001). https://doi.org/10.1038/35104620
- K. T. Lee, H. S. Yoon, and E. D. Wachsman, "The Evolution of Low Temperature Solid Oxide Fuel Cells," J. Mater. Res., 27 [16] 2063-78 (2012). https://doi.org/10.1557/jmr.2012.194
- E. D. Wachsman, C. A. Marlowe, and K. T. Lee, "Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy," Energy Environ. Sci., 5 [2] 5498-509 (2012). https://doi.org/10.1039/c1ee02445k
- S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 [16] 4791-843 (2004). https://doi.org/10.1021/cr020724o
- S. Boyapati, E. D. Wachsman, and B. C. Chakoumakos, "Neutron Diffraction Study of Occupancy and Positional Order of Oxygen Ions in Phase Stabilized Cubic Bismuth Oxides," Solid State Ionics, 138 [3-4] 293-304 (2001). https://doi.org/10.1016/S0167-2738(00)00792-X
- E. D. Wachsman, "Effect of Oxygen Sublattice Order on Conductivity in Highly Defective Fluorite Oxides," J. Eur. Ceram. Soc., 24 [6] 1281-85 (2004). https://doi.org/10.1016/S0955-2219(03)00509-0
-
N. X. Jiang, E. D. Wachsman, and S. H. Jung, "A Higher Conductivity
$Bi_2O_3$ -based Electrolyte," Solid State Ionics, 150 [3-4] 347-53 (2002). https://doi.org/10.1016/S0167-2738(02)00291-6 - E. D. Wachsman, S. Boyapati, and N. Jiang, "Effect of Dopant Polarizability on Oxygen Sublattice Order in Phase-Stable Cubic Bismuth Oxide," Ionics, 7 [1-2] 1-6 (2001). https://doi.org/10.1007/BF02375460
- N. Q. Minh, "Ceramic Fuel-cells," J. Am. Ceram. Soc.,76 [3] 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
-
T. Takahashi, T. Esaka, and H. Iwahara, "Electrical-conduction in Sintered Oxides of System
$Bi_2O_3$ -BaO," J. Solid State Chem., 16 [3-4], 317-23 (1976). https://doi.org/10.1016/0022-4596(76)90047-5 -
T. Takahashi, T. Esaka, and H. Iwahara, "High Oxide Ion Conduction in Sintered Oxides of System
$Bi_2O_3$ -$Gd_2O_3$ ," J Appl. Electrochem., 5 [3] 197-202 (1975). https://doi.org/10.1007/BF01637269 -
M. J. Verkerk and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the
$Bi_2O_3-Dy_2O_3$ System," J. Electrochem. Soc., 128 [1] 75-82 (1981). https://doi.org/10.1149/1.2127391 -
M. J. Verkerk, K. Keizer, and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the
$Bi_2O_3$ -$Er_2O_3$ System," J. Appl. Electrochem., 10 [1] 81-90 (1980). https://doi.org/10.1007/BF00937342 -
D. Mercurio, M. Elfarissi, B. Frit, J. M. Reau, and J. Senegas, "Fast Ionic-conduction in New Oxide Materials of the
$Bi_2O_3$ -$Ln_2O_3$ -$TeO_2$ Systems (Ln = La, Sm, Gd, Er)," Solid State Ionics, 39 [3-4] 297-304 (1990). https://doi.org/10.1016/0167-2738(90)90410-S -
G. Y. Meng, C. S. Chen, X. Han, P. H. Yang, and D. K. Peng, "Conductivity Of
$Bi_2O_3$ -based Oxide Ion Conductors With Double Stabilizers," Solid State Ionics, 28 [29-30] 533-38 (1988). -
D. W. Jung, K. L. Duncan, and E. D. Wachsman, "Effect of Total Dopant Concentration and Dopant Ratio on Conductivity of
$(DyO_{1.5})_x$ -$(WO_3)_Y$ -$(BiO_{1.5})_{1-x-y}$ ," Acta Mater., 58 [2] 355-63 (2010). https://doi.org/10.1016/j.actamat.2009.08.072 -
D. W. Jung, J. C. Nino, K. L. Duncan, S. R. Bishop, and E. D. Wachsman, "Enhanced Long-term Stability of Bismuth Oxide-based Electrolytes for Operation at 500
$500^{\circ}C$ ," Ionics, 16 [2] 97-103 (2010). https://doi.org/10.1007/s11581-009-0402-9 -
D. W. Jung, K. L. Duncan, M. A. Camaratta, K. T. Lee, J. C. Nino, and E. D. Wachsman, "Effect of Annealing Temperature and Dopant Concentration on the Conductivity Behavior in
$(DyO_{1.5})_x$ -$(WO_3)_y$ -$(BiO_{1.5})_{1-x-y}$ ," J. Am. Ceram. Soc., 93 [5] 1384-91 (2010). -
T. Esaka and H. Iwahara, "Oxide Ion and Electron Mixed Conduction in The Fluorite-type Cubic Solid-solution in The System
$Bi_2O_3$ -$Tb_2O_{3.5}$ ," J. Appl. Electrochem., 15 [3] 447-51 (1985). https://doi.org/10.1007/BF00615998 - J. B. Nelson and D. P. Riley, "An Experimental Investigation of Extrapolation Methods in The Derivation of Accurate Unit-cell Dimensions of Crystals," P. Phys. Soc. Lond., 57 [321] 160-77 (1945). https://doi.org/10.1088/0959-5309/57/3/302
-
M. J. Verkerk and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the
$Bi_2O_3$ -$Ln_2O_3$ System," Solid State Ionics, 3-4 463-67 (1981). https://doi.org/10.1016/0167-2738(81)90133-8
Cited by
- Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C vol.29, pp.48, 2017, https://doi.org/10.1002/adma.201700132
- Dysprosium and Gadolinium Double Doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells vol.163, pp.5, 2016, https://doi.org/10.1149/2.0951605jes
- Morphology and Structural Stability of Bismuth-Gadolinium Co-Doped Ceria Electrolyte Nanopowders vol.7, pp.10, 2019, https://doi.org/10.3390/inorganics7100118
- Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review vol.14, pp.5, 2014, https://doi.org/10.3390/en14051280
- Understanding redox cycling behavior of Ni-YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis vol.58, pp.5, 2021, https://doi.org/10.1007/s43207-021-00136-2