Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.4.189

Fabrication of YSZ/GDC Bilayer Electrolyte Thin Film for Solid Oxide Fuel Cells  

Yang, Seon-Ho (Department of Electrical Engineering, Gachon University)
Choi, Hyung-Wook (Department of Electrical Engineering, Gachon University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.4, 2014 , pp. 189-192 More about this Journal
Abstract
Yttria-stablized zirconia (YSZ) is the most commonly used electrolyte material, but the reduction in working temperature leads to insufficient ionic conductivity. Ceria based electrolytes (GDC) are more attractive in terms of conductivity at low temperature, but these materials are well known to be reducible at very low oxygen partial pressure. The reduction of electrolyte resistivity is necessary to overcome cell performance losses. So, thin YSZ/GDC bilayer technology seems suitable for decreasing the electrolyte resistance at lower operating temperatures. Bilayer electrolytes composed of a galdolinium-doped $CeO_2$ ($Ce_{0.9}Gd_{0.1}O_{1.95}$, GDC) layer and yttria-stabilized $ZrO_2$ (YSZ) layer with various thicknesses were deposited by RF sputtering and E-beam evaporation. The bilayer electrolytes were deposited between porous Ni-GDC anode and LSM cathode for anode-supported single cells. Thin film structure and surface morphology were investigated by X-ray diffraction (XRD), using $CuK{\alpha}$-radiation in the range of 2ce morphol$^{\circ}C$. The XRD patterns exhibit a well-formed cubic fluorite structure, and sharp lines of XRD peaks can be observed, which indicate a single solid solution. The morphology and size of the prepared particles were investigated by field-emission scanning electron microscopy (FE-SEM). The performance of the cells was evaluated over $500{\sim}800^{\circ}C$, using humidified hydrogen as fuel, and air as oxidant.
Keywords
GDC; YSZ; Ionic conductivity; Bilayer; SOFC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Beckel, A. Bieberle-Hutter, A. Harvey, A. Infortuna, U. P. Muecke, M. Prestat, J. L. M. L. Rupp, and J. Gauckler, J. Power Sources., 173, 325 (2007) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.04.070].   DOI   ScienceOn
2 B.C.H., Solid State Ion., 129, 95 (2000) [DOI: http://dx.doi. org/10.1016/S0167-2738(99)00319-7].   DOI   ScienceOn
3 F.M.B. Marques and L. M. Navarro, Solid State Ionics, 100, 29 (1997) [DOI: http://dx.doi.org/10.1016/S0167-2738(97)00261-0].   DOI   ScienceOn
4 I. Kosacki and H.U. Anderson, Ionics, 6, 294 (2000) [DOI: http://dx.doi.org/10.1007/BF02374080].   DOI   ScienceOn
5 C. Brahim, A. Ringuede, E. Gourba, M. Cassir, A. Billard, and P. Briois, J. Power Sources, 156, 45 (2006) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2005.08.017].   DOI   ScienceOn
6 Q. L. Liu, K. A. Khor, S. H. Chan, and X. J. Chen, J. Power Sources, 162, 1036 (2006) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.08.024].   DOI   ScienceOn
7 W. S. Jang and S. H. Hyun, J. Mater. Sci., 37, 2535 (2002) [DOI: http://dx.doi.org/10.1023/A:1015451910081].   DOI   ScienceOn
8 A. Tsoga, A. Gupta, A. Naounidis, and P. Nikoloulos, Acta Mater., 48, 4709 (2000) [DOI: http://dx.doi.org/10.1016/S1359-6454(00)00261-5].   DOI   ScienceOn
9 C. R. Xia, F. L. Chen, and M. L. Liu, Electrochem. Solid State Lett., 4, A52e4 (2001).
10 C. Xia and M. Liu, Adv. Mater., 14, 521e3 (2002).
11 Y. B. Khollam, A. S. Deshpande, A. J. Patil, H. S. Potdar, S. B. Deshpande, and S. K. Date, Mater. Chem. Phys., 71, 235 (2001) [DOI: http://dx.doi.org/10.1016/S0254-0584(01)00287-5].   DOI   ScienceOn
12 S. C. Singhal, Solid State Ionics., 405, 152 (2002).
13 Y. Jiang and A.V. Virkar, J. Electrochem. Soc., 148, A706 (2001) [DOI: http://dx.doi.org/10.1149/1.1375166].   DOI   ScienceOn
14 P. E. Gannon, V. I. Gorokhovsky, M. C. Deibert, R. J. Smith, A. Kayani, P. T. White, S. Sofie, Z. Yang, D. McCready, S. Visco, C. Jacobson, and H. Kurokawa, Int. J. Hydrogen Energy, 32, 3672 (2007) [DOI: http://dx.doi.org/10.1016/j.ijhydene.2006.08.012].   DOI   ScienceOn