Browse > Article
http://dx.doi.org/10.4191/kcers.2014.51.4.260

Terbium and Tungsten Co-doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells  

Jung, Doh Won (Samsung Advanced Institute of Technology)
Lee, Kang Taek (Department of Energy Systems Engineering, DGIST (DaeguGyeongbuk Institute Science and Technology))
Wachsman, Eric D. (University of Maryland Energy Research Center, University of Maryland)
Publication Information
Abstract
We developed a novel double dopant bismuth oxide system with Tb and W. When Tb was doped as a single dopant, a Tb dopant concentration more than 20 mol% was required to stabilize bismuth oxides with a high conductivity cubic structure. High temperature XRD analysis of 25 mol% Tb-doped bismuth oxide (25TSB) confirmed that the cubic structure of 25TSB was retained from room temperature to $700^{\circ}C$ with increase in the lattice parameter. On the other hand, we achieved the stabilization of high temperature cubic phase with a total dopant concentration as low as ~12 mol% with 8 mol% Tb and 4 mol% W double dopants (8T4WSB). Moreover, the measured ionic conductivity of 10T5WSB was much higher than 25TSB, thus demonstrating the feasibility of the double dopant strategy to develop stabilized bismuth oxide systems with higher oxygen ion conductivity for the application of SOFC electrolytes at reduced temperature. In addition, we investigated the long-term stability of TSB and TWSB electrolytes.
Keywords
Solid oxide fuel cells; Electrolytes; Bismuth oxides; Double dopants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. B. Nelson and D. P. Riley, "An Experimental Investigation of Extrapolation Methods in The Derivation of Accurate Unit-cell Dimensions of Crystals," P. Phys. Soc. Lond., 57 [321] 160-77 (1945).   DOI   ScienceOn
2 M. J. Verkerk and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3$-$Ln_2O_3$ System," Solid State Ionics, 3-4 463-67 (1981).   DOI   ScienceOn
3 D. Mercurio, M. Elfarissi, B. Frit, J. M. Reau, and J. Senegas, "Fast Ionic-conduction in New Oxide Materials of the $Bi_2O_3$-$Ln_2O_3$-$TeO_2$ Systems (Ln = La, Sm, Gd, Er)," Solid State Ionics, 39 [3-4] 297-304 (1990).   DOI   ScienceOn
4 G. Y. Meng, C. S. Chen, X. Han, P. H. Yang, and D. K. Peng, "Conductivity Of $Bi_2O_3$-based Oxide Ion Conductors With Double Stabilizers," Solid State Ionics, 28 [29-30] 533-38 (1988).
5 D. W. Jung, K. L. Duncan, and E. D. Wachsman, "Effect of Total Dopant Concentration and Dopant Ratio on Conductivity of $(DyO_{1.5})_x$-$(WO_3)_Y$-$(BiO_{1.5})_{1-x-y}$," Acta Mater., 58 [2] 355-63 (2010).   DOI   ScienceOn
6 D. W. Jung, J. C. Nino, K. L. Duncan, S. R. Bishop, and E. D. Wachsman, "Enhanced Long-term Stability of Bismuth Oxide-based Electrolytes for Operation at 500$500^{\circ}C$," Ionics, 16 [2] 97-103 (2010).   DOI
7 D. W. Jung, K. L. Duncan, M. A. Camaratta, K. T. Lee, J. C. Nino, and E. D. Wachsman, "Effect of Annealing Temperature and Dopant Concentration on the Conductivity Behavior in $(DyO_{1.5})_x$-$(WO_3)_y$-$(BiO_{1.5})_{1-x-y}$," J. Am. Ceram. Soc., 93 [5] 1384-91 (2010).
8 T. Esaka and H. Iwahara, "Oxide Ion and Electron Mixed Conduction in The Fluorite-type Cubic Solid-solution in The System $Bi_2O_3$-$Tb_2O_{3.5}$," J. Appl. Electrochem., 15 [3] 447-51 (1985).   DOI
9 E. D. Wachsman, "Effect of Oxygen Sublattice Order on Conductivity in Highly Defective Fluorite Oxides," J. Eur. Ceram. Soc., 24 [6] 1281-85 (2004).   DOI   ScienceOn
10 N. X. Jiang, E. D. Wachsman, and S. H. Jung, "A Higher Conductivity $Bi_2O_3$-based Electrolyte," Solid State Ionics, 150 [3-4] 347-53 (2002).   DOI   ScienceOn
11 E. D. Wachsman, S. Boyapati, and N. Jiang, "Effect of Dopant Polarizability on Oxygen Sublattice Order in Phase-Stable Cubic Bismuth Oxide," Ionics, 7 [1-2] 1-6 (2001).   DOI   ScienceOn
12 N. Q. Minh, "Ceramic Fuel-cells," J. Am. Ceram. Soc.,76 [3] 563-88 (1993).   DOI
13 T. Takahashi, T. Esaka, and H. Iwahara, "Electrical-conduction in Sintered Oxides of System $Bi_2O_3$-BaO," J. Solid State Chem., 16 [3-4], 317-23 (1976).   DOI   ScienceOn
14 T. Takahashi, T. Esaka, and H. Iwahara, "High Oxide Ion Conduction in Sintered Oxides of System $Bi_2O_3$-$Gd_2O_3$," J Appl. Electrochem., 5 [3] 197-202 (1975).   DOI
15 M. J. Verkerk and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3-Dy_2O_3$ System," J. Electrochem. Soc., 128 [1] 75-82 (1981).   DOI   ScienceOn
16 K. T. Lee, H. S. Yoon, and E. D. Wachsman, "The Evolution of Low Temperature Solid Oxide Fuel Cells," J. Mater. Res., 27 [16] 2063-78 (2012).   DOI
17 M. J. Verkerk, K. Keizer, and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3$-$Er_2O_3$ System," J. Appl. Electrochem., 10 [1] 81-90 (1980).   DOI   ScienceOn
18 E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011).   DOI   ScienceOn
19 B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001).   DOI   ScienceOn
20 E. D. Wachsman, C. A. Marlowe, and K. T. Lee, "Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy," Energy Environ. Sci., 5 [2] 5498-509 (2012).   DOI   ScienceOn
21 S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 [16] 4791-843 (2004).   DOI   ScienceOn
22 S. Boyapati, E. D. Wachsman, and B. C. Chakoumakos, "Neutron Diffraction Study of Occupancy and Positional Order of Oxygen Ions in Phase Stabilized Cubic Bismuth Oxides," Solid State Ionics, 138 [3-4] 293-304 (2001).   DOI   ScienceOn