• Title/Summary/Keyword: loop transfer recovery

Search Result 58, Processing Time 0.033 seconds

Precise Control of Inchworm Displacement Using the LQG/LTR Technique (LQG/LTR 기법을 이용한 이송자벌레 변위의 정밀 제어)

  • Jeon, Yoon-Han;Hwang, Yun-Sik;Park, Heung-Seok;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2015
  • In this study, the linear quadratic Guassian loop transfer recovery (LQG/LTR) control technique was combined with an integrator and applied to an inchworm having piezoelectric actuators for precise motion tracking. The piezoelectric actuator showed nonlinear response characteristics, including hysteresis, due to its ferroelectric characteristics and the residual displacement phenomenon. This paper proposes a feedback control scheme using the LQG/LTR controller with an integrator to improve the ability to track the response to complex input signals and to suppress the phenomenon of hysteresis and residual vibration. Experimental results show that the developed feedback control system for an inchworm can track the various motion contours quickly without residual vibration or overshoot.

Design Procedure of Robust LQG/LTR Controller of TCSC for Damping Power System Oscillations (전력시스템 동요 억제를 위한 TCSC의 강인한 LQG/LTR 제어기 설계절차에 관한 연구)

  • Son, Kwang-Myoung;Lee, Tae-Gee;Jeon, In-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.30-39
    • /
    • 2002
  • This paper deals with the design of a robust LQC/LTR (Linear Quadratic Gaussian with Loop Transfer Recovery) controller of the TCSC for the power system oscillation damping enhancement. Designing LQG/LTR controller involves several design parameter adjustment processes for performance improvement. this paper proposes a systematic design parameter adjustment procedure which is suitable for robust multi-monde stabilization. The designed controller is verified by nonlinear power system simulation, which shows that the controller is effective for damping power system oscillations.

A Study on the LQG/LTR for Nonminimum Phase Plant (II) : Realization for the Optimal Approximation Method (비 최소위상 플랜트에 대한 LQG/LTR에 관한 연구(II) : 최적 근사 방법의 실현)

  • 강진식;서병설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.10
    • /
    • pp.981-991
    • /
    • 1991
  • LQG/LTR method suggested to improve robustness of LQG have a theoritical constraint that it cannot apply to nonminimum phase plant(NMP). In this paper, we suggest a new LQG/LTR method for NMP which consist of three design steps. The first step is design a additional feed-foward compensator which approximate the given NMP plant to minimum phase(MP) plant and the next step is design a target loop transfer function for approximated MP plant satisfying the design specifications such as robust-performance and robust-stability. The last step is loop transfor recovery(LTR) that the open loop transfer function recovers the terget loop. It was shown by simulation example that the suggested method can solve the NMP constraint in designing LQG/LTR.

  • PDF

Transfer Function Derivation and LQG/LTR Speed Ratio Control for a Metal Belt CVT (금속벨트 CVT의 전달함수 도출과 변속비 LQG/LTR 제어)

  • 김종준;송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • In this paper, a transfer function was obtained for a PWM high speed solenoid valve controlled metal belt CVT system. The transfer function was defined as the ratio of speed ratio to PWM duty ratio and derived in time domain by linear regression analysis from the experimental results. The transfer function obtained showed different dynamic characteristics for the up and down shift. Also, LQG/LTR controller was designed for the CVT system using the transfer function. It is seen from the experimental results that LQG/LTR control showed good performance for the speed ratio tracking and disturbance rejection. The phase difference and relatively slow response are considered due to the inaccuracy os the transfer functions, which resulted from the inherent nonlinearities of the transmission characteristics of the metal belt CVT.

  • PDF

Vibration Contol of Automotive Suspension System using the LQG/LTR Control Methodology (LQG/LTR제어기법을 이용한 자동차 서스펜션 시스템의 진동제어)

  • Ahn, Jeong-Keun;Song, Chang-Hun;Yoo, Sam-Hyeon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.646-653
    • /
    • 2001
  • LQG/LTR Control Methology is recently used for the analysis of multi-variable control in frequency domain. Target filter loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery is accomplished by solving the cheap control and then simulation close to the target filter loop. In this study, LQG/LTR Control Methodology is applied to the seat suspension system. It is found that this technique is very effective to control the system and improve the ride quality of human body.

  • PDF

Analysis of Multi-Variable Control using Model Based Compensator (Model Based Compensator를 이용한 다변수 제어 분석)

  • Jung, Ji-Hyeon;Lee, Woo-Min;Yoo, Sam-Hyeon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.564-569
    • /
    • 2000
  • Model Based Compensator(MBC) is recently used for the analysis of multi-variable control in frequency domain. Target loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery will be continued in frequency domain until the plant with MBC comes close to the target loop. In this study, the technique using MBC is applied to the elevator vibration control system. It is found that this technique is very effective to control the vibration system.

  • PDF

Study of Vitrification of Immatured Pig Oocytes: Compared with Open Pulled Straw(OPS), Electron Microscopic Grid(EMG) and Nylon Loop System(NLS) (미성숙 돼지 난자의 유리화 동결에 관한 연구: Open Pulled Straw(OPS), Electron Microscopic Grid(EMG) 및 Nylon Loop System(NLS)의 비교)

  • 김인덕;안미현;석호봉
    • Journal of Embryo Transfer
    • /
    • v.19 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This study evaluated the efficiency and compared with different materials of loading vessels for vitrification-plastic/glass, copper grid and nylon. The loading method, vitrification, cryop-reservation and warming method of the oocytes were examined. The loading samples prepared in manual or company-made and sterilized, loaded the COCs selected on each samples and cultured for maturation during 40 hours, and then exposed sequentially to ethylene glycol solution. Thawing method was reversely treated and exposed for warmed oocytes. After oocytes were thawed, fertilized and cultured in vitro for 3-4 hours, rates of development and morphological appearance were examined. The results were as summarized: ㆍOPS from company-made or hand-made of the hematocrit micropipettes, NLS from fishing line and EMG from company-made for EM were used for loading oocytes, respectively. ㆍThe efficiency of freezing method and loading convenience were orderly higher in OPS, NLS and EMG. The optimal capacity per vessel was orderly lowered in NLS, EMG and OPS, respectively. ㆍAfter oocytes were warmed, the recovery rate, morphology and rate of development were orderly higher in OPS, NLS and EMG, respectively. ㆍIn conclusion, OPS has the advantages of achieving a little more survival and preserving results than other two loading methods.

Motion Control of the Precise Stage using Piezoelectric Actuator (압전소자를 이용한 정밀 스테이지의 운동제어)

  • Kim, In-Soo;Kim, Yeung-Shik;Hwang, Yun-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.102-108
    • /
    • 2011
  • LQG/LTR control scheme is applied to the two axes stage using piezoelectric actuator for tracking reference input and suppressing hysteresis effect in this paper. The plant is combined with an integrator to improve the tracking ability. LQG/LTR controller is designed by making desirable target filter loop remove all poles except for an integrator included in new design plant model and loop transfer recovery. Decoupler in the shape of FIR filter is added to remove the coupling effect between the two axes motion and so feedback control loop is designed independently for the each axis motion.

Optimum Parameter Determination of PLL Used in Timing Clock Recovery Circuit (타이밍 클릭 복원 회로에 사용된 PLL의 최적 파라미터 결정)

  • Ryu, Heunggyoon;ANN, Souguil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.376-380
    • /
    • 1987
  • The closed-loop transfer function of 2-nd order PLL (phase-looked loop)of which loop filter has active-lag 1-st order is found. Considering the three criteria of system performance: the transient response time of the circuit, noise bandwidth by the linear analysis and stability which uses root-locus method, the optimum value of damping factor is 1.0 and the natural frequency which depends upon the signal frequency can be determined after consideration of the trade-off relationship between the transient response time and the noise bandwidth.

  • PDF

Decomposed Linear Quadratic Gaussian with Loop Transfer Recovery Controller Design for an Undersea Vehicle (수중운동체를 위한 분할 LQG/LTR 제어기 구성)

  • Han, Hyung-Seok;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.121-124
    • /
    • 1989
  • In this thesis, a decomposed LQG/LTR controller is designed for an undersea vehicle. The modellig error which results from decomposition of the original model is considered to the design specification for maintaining the robust stability. The LQG/LTR controller designed with new specification is simulated.

  • PDF