• Title/Summary/Keyword: loop reinforcement

Search Result 26, Processing Time 0.022 seconds

Experimental Study on Connectability of Half-Depth Precast Deck Panels with Loop Joint (루프이음을 갖는 반단면 프리캐스트 바닥판 이음부 성능에 대한 실험적 연구)

  • Chung, Chul Hun;Sung, Yeol Eun;Hyun, Byung Hak;Park, Se Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.581-590
    • /
    • 2008
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. In this paper, three types of the detail for joints was selected and their structural performance in terms of strength and crack contral was investigated through static tests on composite beams. Form the results, the validity of loop joints for continuity of half-depth precast deck was observed and especially an overlapping length of loop joint and transverse reinforcement were checked. The results suggest that increasing the loop overlapping length increases the flexural strength of half-depth precast deck with loop joints. In terms of crack contral, the loop joint with transverse reinforcement showed better performance.

High-Accuracy Motion Control of Linear Synchronous Motor Using Reinforcement Learning (강화학습에 의한 선형동기 모터의 고정밀 제어)

  • Jeong, Seong-Hyen;Park, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1379-1387
    • /
    • 2011
  • A PID-feedforward controller and Robust Internal-loop Compensator (RIC) based on reinforcement learning using random variable sequences are provided to auto-tune parameters for each controller in the high-precision position control of PMLSM (Permanent Magnet Linear Synchronous Motor). Experiments prove the well-tuned controller could be reduced up to one-fifth level of tracking errors before learning by reinforcement learning. The RIC compared to the PID-feedforward controller showed approximately twice the performance in reducing tracking error and disturbance rejection.

Position Control of Linear Synchronous Motor by Dual Learning (이중 학습에 의한 선형동기모터의 위치제어)

  • Park, Jung-Il;Suh, Sung-Ho;Ulugbek, Umirov
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.

Bending Tests of Precast Deck with Loop Joints (루프 이음 프리캐스트 바닥판의 휨실험)

  • 류형근;장승필;김영진;주봉철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.518-523
    • /
    • 2003
  • In domestic composite bridges, it has been reported that most failure is occurred in deck and the type of failure was mainly punching shear failure. Therefore to increase a life of bridges and reduce maintenance costs, an improvement of a durability of slabs is needed. In these respects, precast deck can be very useful. In a composite bridge with precast decks, it is required to notice behavior of transverse joints between decks. In this paper, bending tests of precast deck with loop joints were conducted. From the results, the validity of loop joints for continuity of deck was observed and especially an interval of loop joint, diameter of loop and reinforcement were checked.

  • PDF

Numerical analysis study of reinforced method (loop type) at the double-deck tunnel junction (복층터널 분기부에서의 보강공법(루프형 강선)에 따른 수치해석 연구)

  • Lee, Seok Jin;Park, Skhan;Lee, Jun Ho;Jin, Hyun Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.823-837
    • /
    • 2018
  • Congestion of the city with the rapid industrial development was accelerated to build complex social infrastructure. And numerous structures have been designed and constructed in accordance with these requirements. Recently, to solve complex urban traffic, many researches of large-diameter tunnel under construction downtown are in progress. The large-diameter tunnel has been developed with a versatile double-deck of deep depth tunnel. For the safe tunnel construction, ground reinforcement methods have been developed in the weakened pillar section like as junction of tunnel. This paper focuses on evaluation of the effects of new developed ground reinforcement methods in double-deck junction. The values of reinforcement determined from the existing and developed methods were compared to each other by numerical simulation.

Strength of PSC Bridge Decks using Half-Depth Precast Panel with Loop Joint (루프이음 반단면 프리캐스트 패널을 이용한 PSC 바닥판의 강도평가)

  • Chung, Chul Hun;Kim, Yu Seok;Hyun, Byung Hak;Kim, In Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.433-445
    • /
    • 2009
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. Research has also demonstrated that mechanical shear ties on the top of the panels are required. In a composite deck with precast panels, it is required to notice behavior of transverse joints between panels. In this paper, static tests of composite deck with shear ties and loop joints were conducted. From the results, the validity of loop joints for continuity of deck was observed. Also, a composite behavior was abserved between precast panel and slab concrete. Tested composite decks with shear ties have 140~164% ultimate strength than have no shear ties due to the increase of composite action. Therefore, the shear ties between the slabs were sufficient to enforce composite flexural behavior to failure.

Evaluation on the Horizontal Shear Strength of Precast Concrete Slab with the Inverted-Rib-Plus (리브플러스 PC슬래브의 수평전단강도 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Yun Cheul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.156-165
    • /
    • 2011
  • This study investigates the horizontal shear behavior of an interface between precast concrete (PC) and topping concrete(RC), and evaluates the horizontal based on the investigations by the experimental. Horizontal shear strength in connected surface is determined by the roughness an interface and the shear reinforcement or not. In this study, the main experimental parameters are the shear reinforcement types in the shape of loop-type and lattice-type, rebar spacing. A total of four specimens were shear strength tested and manufactured. As a result, the horizontal shear strength of reinforced connected surface was found to be controlled by deformation in vertical direction. Comparison of reinforcement shape, the mean initial crack load loop type specimens, the average maximum load and the junction of the average in terms of initial stiffness, respectively 33.7%, 45.9% and 55.2% were large enough. Evaluation results for shear strength equation of existing standard domestic, the loop-type reinforced 2.32 to 4.23 times, lattice-type reinforced 1.65 to 3.06 times appears to be higher. Behavior of interface or strength of structural design criteria was fairly safe side. It does not have any problems in the applied field is considered.

An Experimental Study on Structural Behavior of Segmental Joint in Prestressed Composite Girder (프리스트레스트 강합성거더의 분절 접합부 구조거동에 관한 실험적 연구)

  • Lee, Juwon;Ha, Taeyul;Yang, Inwook;Han, Jongwook
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.422-431
    • /
    • 2016
  • This study was evaluated in the performance of the connection according to the details of the concrete casing segment in the prestressed composite girder by fabricating and testing specimens with different segments. A total of four comparative specimens were fabricated by using the variables of general composite girders, reinforcement or non-reinforcement, and details of reinforcing bars in the segments so as to evaluate the structural behavior of steel girders. In addition, the possibility of non-cracking grade design of segmented composite girders as well as the effects of stiffness and strength according to the loop connection types after cracking were analyzed, and the appropriateness of the crack width control both the embedded steel plate and the concrete surface were evaluated.

Formal Model of Extended Reinforcement Learning (E-RL) System (확장된 강화학습 시스템의 정형모델)

  • Jeon, Do Yeong;Song, Myeong Ho;Kim, Soo Dong
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.13-28
    • /
    • 2021
  • Reinforcement Learning (RL) is a machine learning algorithm that repeat the closed-loop process that agents perform actions specified by the policy, the action is evaluated with a reward function, and the policy gets updated accordingly. The key benefit of RL is the ability to optimze the policy with action evaluation. Hence, it can effectively be applied to developing advanced intelligent systems and autonomous systems. Conventional RL incoporates a single policy, a reward function, and relatively simple policy update, and hence its utilization was limited. In this paper, we propose an extended RL model that considers multiple instances of RL elements. We define a formal model of the key elements and their computing model of the extended RL. Then, we propose design methods for applying to system development. As a case stud of applying the proposed formal model and the design methods, we present the design and implementation of an advanced car navigator system that guides multiple cars to reaching their destinations efficiently.

Fatigue Performance of Bridge Decks using Half-Depth Precast Panel with Loop Joint (루프이음 반단면 프리캐스트 패널을 이용한 교량 바닥판의 피로성능)

  • Chung, Chul Hun;Lim, Seung Jun;Kim, Hyun Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.35-43
    • /
    • 2010
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. However, in order to apply the precast panels to bridges properly, it is necessary to fully understand the structural characteristics of joint in precast panels. Particularly, since the bridge deck is under repeated loads such as traffic loads, fatigue behavior and characteristics of joint should be investigated. In this paper, fatigue tests of composite deck with shear ties and loop joints were conducted. The fatigue tests were conducted with an application of repeated loading and wheel loading. Test results were analyzed to examine the current design code for fatigue of reinforcement bar and serviceability under repeated loading.