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A PID-feedforward controller and Robust Internal-loop Compensator (RIC) based on 

reinforcement learning using random variable sequences are provided to auto-tune parameters 

for each controller in the high-precision position control of PMLSM (Permanent Magnet Linear 

Synchronous Motor). Experiments prove the well-tuned controller could be reduced up to one-fifth 

level of tracking errors before learning by reinforcement learning. The RIC compared to the PID-

feedforward controller showed approximately twice the performance in reducing tracking error 

and disturbance rejection. 
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1. Introduction 

 

Linear motors are becoming more important to form 

high speed and high precision linear motion systems. 

They are used instead of a rotary motor that is uses a 

rotary actuator and a lead screw used for the mechanical 

transmission unit to convert rotary motion to linear 

motion in semiconductor equipment, machine tools, 

automatic test equipment and so on. A conventional 

rotary motion system using a lead screw degrades the 

response of the dynamic characteristic by time delay 

backlash, deadzone, screw friction, PMLSM. Conversely, 

it has a simple structure, high thrust power from the 

direct linear motion, long life, low maintenance cost, and 

low thermal loss. This enables it to obtain high speed, 

high precision motion control. PMLSM, however, has 

defects sensitive to disturbance, so it is easily affected by 

friction and torque ripple. PMLSM should be treated with 

an efficient control algorithm to obtain high speed, high 

precision position control performance. The objective of 

this paper is to design a precise position controller by 

using reinforcement learning to adaptively tune parameters 

of the controller for a PMLSM motion control system. 

PMLSM can be modeled by two nonlinear 

characteristics of friction and ripple force related to 

velocity and position of the moving coil, as shown in Fig. 

1. Cogging and magnetic reluctance force can cause an 

unwanted ripple force against the thrust power related to 

the moving coil position. The ripple force is usually 

generated in iron-core type motors, where there is a lower 

weight of the moving core or low speed motor movement. 

The ripple force is difficult to predict but can be 
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reproducible. Thus, it can be rejected by controlling the 

force input with an online learning controller. Research 

has been published on overcoming the ripple force with a 

learning feedforward controller based on a neural 

network for PMLSM motion control.1 Another nonlinear 

characteristic is friction that has an effect on actuation 

performance. It is inevitably generated by contact, and 

can be an obstacle to precise position control. It can 

usually be represented as static friction and Coulomb 

friction, as well as viscosity and Stribeck effects. 

Especially, viscous friction and Coulomb friction show 

nonlinear characteristics related to velocity. Research, 

such as compensation of the entire disturbance estimation 

of PMLSM to remove the nonlinear characteristics 

efficiently,2,3 high precision position control algorithms, 

using a robust internal loop compensator, were 

developed.4-7 In this paper, we propose an algorithm that 

can adapt parameters of a controller automatically using 

reinforcement learning with error.8 A robust motion 

control structure to improve performance of the whole 

closed-loop system should be designed in advance to 

achieve this. Then, the adaptive learning to tune optimal 

parameters of the RIC and PID-feedforward controller 

with reinforcement learning based on random variable 

sequences is performed. 

Section 2 introduces the reinforcement learning 

algorithm and explains the PID-feedforward controller 

and RIC used in this paper. Section 3 conducts the 

experiments for several motion controllers and evaluates 

the results. Section 4 draws conclusions. 

 

 

Fig. 1 PMLSM model with friction and ripple force 

 

2. Design of controller with reinforcement learning 

 

2.1 Reinforcement learning based on random 

variable sequence 

This paper introduces a reinforcement learning 

algorithm to adaptively tune parameters of the controller 

as in.8 Reinforcement learning adapts the strength of the 

synapse with eq.(1). Here η is the learning rate, f the 

activation function, θ is 0.5, as the bias, n is a discrete 

random process between 0 and 1. 
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where, r(t) is the reinforcement signal as eq.(2). 
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J(t) is the performance index; it represents the entire 

sum of errors and the squares of the error derivative, as 

shown in eq.(3), in the discrete time domain; a lower 

value means better performance. The synapse learning 

can be done if the performance index is lower; otherwise, 

recover the previous one. The activation function is a 

bipolar step function, as in eq.(4). 
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2.2 Design of PID controller based on 

reinforcement learning 
 

 

Fig. 2 PID-feedforward controller structure based on 

reinforcement learning 
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Fig. 2 shows the control structure of PMLSM with 

the PID-feedforward controller based on reinforcement 

learning using random variable sequences. It uses a 

sinusoidal position profile and several parameters, such 

as PID gains (KP, KI, KD), velocity gain (KV), acceleration 

feedforward gain (KA), are auto-tuned by reinforcement 

learning using random variable sequences. 

 

 

Fig. 3 Flow of control parameters tuning using 

reinforcement learning with random variable 

sequence 

 

Fig. 3 shows the flow of reinforcement learning, 

parameters of each controller learn to minimize the 

performance index that evaluates learning results. 

 

2.3 Design of RIC with reinforcement learning 

The controller design using disturbance observer 

(DOB), adaptive robust control2,3 are research to 

compensate disturbances. Generally, the DOB structure 

consists of a low-pass filter Q(s) and an inverse model of 

the plant for external disturbance compensation. The RIC 

structure is equivalent to the DOB one. Fig. 4 is the 

relationship diagram that shows the equivalence between 

the RIC and DOB structure. y is plant output, ur is the 

reference input, Pm(s) is the reference plant model, yr is 

the reference output, dex is external disturbance, ξ is the 

sensing noise. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 4 Equivalent block diagram between RIC and DOB 

structure : (a) DOB structure, (b) Normal RIC 

structure, (c) Modified RIC structure 

 

In Fig. 4, if the relation of eq.(5) is satisfied, the DOB 

structure of Fig. 4(a) and RIC structure of Fig. 4(c) are 

equivalent. Fig. 4(b), the normal structure of RIC, is a 

special one of the DOB structures with reference model 

Pm(s). 
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Control input can be calculated as in eq.(6) from Fig. 

4(b). 
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Here u* is the control input term to compensate for the 

nonlinearity and uncertainty. K(s) is the internal loop 

feedback compensator. The PMLSM plant model is set as 

in eq.(7). 
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where, Jm and Bm are the nominal value of the mass and 

viscous friction of the linear motor, respectively. 

If Q(s) is a first order low pass filter, as 1/(τs+1), K(s) 

of eq.(5) will be same as eq.(8). 
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In eq.(8), if 1/τ=D, the internal loop K(s) is 

(Jms+Bm)D, which is the PD controller, then 

Q(s)=D/(s+D) by eq.(5). It becomes the same structure as 

the first-order low pass filter proposed by Ohnishi.9 

 

 

Fig. 5 RIC structure with outer feedback loop and 

feedforward loop 

 

RIC, as shown in Fig. 5, can be structured by adding 

the outer loop controller to the Fig. 4(c) structure. Cff(s) is 

the feed-forward controller, C(s) is the feedback 

controller and yd is the desired output. The outer loop 

controller C(s) and Cff(s) are shown as in eq.(9). 
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Here Λ, D is constant 

By Fig. 5, the control input becomes eq.(10) and the 

model reference input is the same as eq.(11). 
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If the well-tuned inter-loop works as Pm(s), then the 

entire feedback closed loop characteristic equation is 

represented as eq.(12), using eq.(7) and eq.(9). 
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It can be rearranged as eq.(13). 
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The feedback closed loop characteristic equation will 

be a second-order equation, as shown in eq.(14). 
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where, ζ is the damping ratio and ωn is the natural 

frequency. 

If the desired poles are given by eq.(14), then the 

internal loop feedback controller gains K1, K2 can be 

calculated as eq.(15) by comparing coefficients of eq.(13) 

and (14). 
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The structure of Fig. 6 shows that each parameter is 

automatically adjusted by tuning each parameter, such as 

Λ, ζ, ωn and D using reinforcement learning. The external 

loop gain K1, K2 is calculated by three factors Λ, ζ, ωn. At 

this time, the flow of reinforcement learning is performed, 

as in Fig. 3, except for the different learning parameters. 

 

 

Fig. 6 Structure of RIC using reinforcement learning 
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3. Experiments of Motion Control 

 

The entire control system shown in Fig. 7 consists of 

PMLSM, servo driver, DSP controller and XDS 510 USB 

JTAG. The servo driver can make three-phase torque 

control signals and acquire the motion states of position 

and velocity through the linear scale encoder. The control 

software compiled is downloaded to flash memory of the 

target control board through JTAG XDS510. Position, 

velocity, acceleration states are saved to external memory 

of the control board and transferred to the PC through the 

RS232C port for evaluation. 

 

 

Fig. 7 Structure of PMLSM motion control system 

 

3.1 Experiments 

Experiments of two controllers, the PID-feedforward 

controller and the RIC based on reinforcement learning, 

were performed with the motion control system of 

PMLSM. 

 

3.1.1 Generation of motion profile 

The sine wave position profile, shown in Fig. 8 is 

used, to prevent the discontinuous jerk that can greatly 

 

 

Fig. 8 Profiles based on sine wave 

influence motion error. It is 5cm circular motion during 

0.8 sec including stopping time. Reinforcement learning 

is performed comparing the sum of squared tracking 

errors of the current sample time with one of the previous 

sample times. One learning cycle takes 0.8 sec.  

 

3.1.2 Experiments using PID feedforward 

controller based on reinforcement 

learning 

Fig. 9(a) shows the control results before learning 

using the PID-feedforward controller; maximum tracking 

error is about 240µm. The form of tracking error keeps up 

a similar acceleration profile shape shown in Fig. 8. Fig. 

9(b) is the result of the PID-feedforward controller after a 

hundred times self-reinforcement learning. The maximum 

error is about 100µm; this is largely enhanced. Fig. 9(c) is 

the experimental results after eight hundred learning 

times. The maximum tracking error greatly decreased to 

50µm. This is one-fifth the level of tracking error before 

learning. This shows the performance of the PID 

controller is improved more than fivefold after learning. 
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(c) 

Fig. 9 Tracking error using PID-feedforward controller: 

(a) before learning, (b) 100 times learning, (c) 800 

times learning 
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Fig. 10 Transition of the performance index during PID-

feedforward controller's learning 

 

Fig. 10 shows the transition of the performance index 

during the PID-feedforward controller's learning. It 

shows a rapid decrease until about 200 learning times, but 

no further decrease after 600 learning times. The 

performance index decrease from 45 to 13, shows about a 

420% performance improvement. 

 

3.1.3 Experiments using RIC with reinforcement 

learning. 

Fig. 11(a) shows the results of using RIC before 

reinforcement learning. The maximum tracking error is 

170µm. It performs better compared to the maximum 

error, 250µm, of the PID-feedforward controller, shown 

in Fig. 9(a). 
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(c) 

Fig. 11 Tracking error of RIC based pole placement 

control: (a) before learning, (b) 100 learning 

times, (c) 800 learning times  

 

Fig. 11(b) shows the RIC's results after 100 learning 

times. Performance is largely enhanced due to decreasing 

tracking error to the 65µm level. Fig. 11(c), the 

experimental results after 800 learning times, shows that 

maximum tracking error is 25µm. This shows that RIC's 
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performance is greatly enhanced and less than the 

maximum tracking error 50µm using the PID-

feedforward control. The shape of the steady state error 

during the regulation time district of 0.3~0.4 second 

differs from the shape of the PID-feedforward controller's 

error. 

Fig. 12 shows the transition of the performance index. 

It shows a rapid and soft decrease until 300 learning 

times, but there is no further decrease after this. That is, 

there is no more learning progress. The performance 

index decrease from 38 to 7 shows about 542% 

improvement from learning. 
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Fig. 12 Transition of performance index for RIC 

 

3.1.4 Constant low speed motion experiment 
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Fig. 13 Tracking error of PID and RIC at constant 

velocity 

 

Fig. 13 depicts the results of constant low speed 

motion during four seconds between 30mm district with 

the PID-feedforward controller and the RIC after learning. 

The offset error appears in the case of the PID-

feedforward controller, but there is no offset error of the 

RIC. RMS tracking error greatly decreased to 2.2μm 

from 6.8μm. The The RIC showed approximately 

threefold performance in reducing tracking error at 

constant low speed compared to the PID-feedforward 

controller. 

 

3.1.5 Experiment of load insertion using a spring 

 

 

Fig. 14 Mechanism to apply several loads using a spring 

 

Fig. 14 shows the apparatus to apply positional load 

with a spring system. The spring w is equipped at the end 

of PMLSM's linear motion system to insert the 

accumulated power. 

 

 

Fig. 15 Insertion of load using spring 

 

Fig. 15 is the ideal graph that shows change in the 

spring position related to the position profile of PMLSM. 

The spring constant is 0.1N/mm. 1N load for one spring 

can be inserted during 0.1sec from 0.3sec to 0.4sec, when 

it moves 10mm of the maximum position change. 

Fig. 16 compares each controller's tracking error with 

or without 4N load using four springs. The PID-

feedforward controller shows that the external 

disturbance caused by the load cannot be eliminated 
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effectively due to the tracking error increase to 20µm 

when a 4N load is applied during the position regulation 

block from 0.3sec to 0.4sec. However, in case of RIC 

under the same load, the external disturbance caused by 

the load is efficiently eliminated, as there is not much 

difference shown in the tracking error during the 

regulation block from 0.3sec to 0.4sec. Therefore, it can 

be seen that the well-tuned RIC with reinforcement 

learning performs better than the well-tuned PID-

feedforward controller does, when an external 

disturbance is applied. Thus, the RIC structure itself 

forms a robust internal loop and removes load 

disturbance efficiently. 
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(b) 

Fig. 16 Tracking error comparison with/without 4N load: 

(a) PID-feedforward controller, (b) RIC 

 

3.2 Evaluation of experiments. 

Table 1 shows the RMS value of tracking error before 

and after learning under the conditions of no load and 4N 

external load. As the RMS value of the PID-feedforward 

controller and RIC are remarkably lowered to 11.76µm 

and 6.43µm respectively, after reinforcement learning, it 

can be shown that reinforcement learning based on 

random variable sequences can tune parameters of the 

controller to improve performance adaptively. When 4N 

load disturbance is applied in the specified block, 

reinforcement learning experimental results of the PID-

feedforward controller shows 13.24µm. This has a 

1.48µm difference to the 11.76µm of no load learning. 

Thus, the performance of the PID-feedforward controller 

can be influenced by disturbances. In contrast, the results 

of the RIC after reinforcement learning were 6.45µm, 

very similar to the no load results of 6.43µm before 

learning. This implies that the RIC is rarely influenced by 

disturbances. 

 

Table 1 Comparison of each controller's RMS tracking 

error(unit:um) 

 Controller PID-feedforward 
controller RIC 

Learning  

No load

before 
learning

50.52 35.21

after 
learning

11.76 6.43

Insertion of
4N load

before 
learning

55.12 36.53

after 
learning

13.24 6.45

 

4. Conclusion 

 

In this paper, an efficient parameter tuning method 

for the PID-feedforward controller and RIC using 

reinforcement learning based on random variable 

sequences was proposed for high precision position 

motion control of PMLSM. The performance of each 

controller was evaluated by experiments with a linear 

motion system equipped with a high resolution linear 

scaler. A control board, which included 32bits 150MIPS 

DSP and the high density FPGA, was developed to 

conduct experiments. Tracking error was reduced by 

tuning parameters of each controller with reinforcement 

learning. Comparisons for each controller were also 

performed. RIC performs better than does the PID-

feedforward controller from the viewpoint of reducing 

tracking error and disturbance rejection. 
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