• Title/Summary/Keyword: long-term pavement performance

Search Result 79, Processing Time 0.024 seconds

Preliminary Investigation of Pavement Adjustment Concepts for Slab Thickness Deficiency in Portland Cement Concrete Pavement (콘크리트 포장의 슬래브 두께 손실에 대한 지불규정 기준 정립을 위한 기초연구)

  • Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.141-151
    • /
    • 2007
  • The current standards and specifications for the road pavement construction have been developed based on materials and construction methods. The pavements constructed in accordance with those specifications do not guarantee high performance of pavements since they do not consider long-term performance of pavements. Therefore, as part of the study to develop performance-based construction standards for pavements, the payment adjustment methods based on the pavement performance are currently being developed. This paper presents preliminary studies performed to develop the payment adjustment methods when there is deficiency in the concrete slab thickness that is one oi the most important factors for the pavement design and construction. First, the payment adjustment methods in USA were investigated. Then, the AASHTO failure equation, the relationship between slab thickness and stress, and the relationship between stress level and pavement life were employed to propose the payment adjustment concepts based on the pavement performance for the deficient slab thickness. The variation in the slab thickness according to measurement locations was investigated by taking cores. In addition, the measurement methods of slab thickness and the variation of measured thicknesses depending on performers were analyzed, and finally the methodology to develop the thickness deficiency ranges for the use in the payment adjustment methods was proposed.

  • PDF

A Study for Controlling Early-age Temperature Rise of the Concrete Pavement by Shadow Tent in Hot Weather Construction (차광막를 이용한 하절기 콘크리트포장의 초기온도 관리 방안연구)

  • Joh, Young-Oh;Kim, Hyung-Bae;Suh, Young-Chan;Ann, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.75-89
    • /
    • 2004
  • Long term performance of concrete pavement significantly depends on the given construction and environmental condition. It means that random cracks and extreme crack width due to inappropriate quality control at the early age might lead to decreasing the pavement service life. The temperature and moisture during the construction, cement and aggregate types, curing condition are major components to affect the quality of the concrete pavement at the early age. First of all, the high temperature differential, that is made by increasing air temperature and the heat of cement hydration, is known as the major contributor to severe cracks. In this study, tent covering was used for controlling temperature of the concrete slab. The field measurement data indicates that the effect of the tent covering is very significant to decrease possibilities of random crack occurrence and curling stress and enhance the long-term concrete strength. HIPERPAV(High PERformance PAVing software), a program predicting the strength and stress of an earty-age concrete pavement (72 hour after placement), is used for simulating the effects of tent covering. The HIPERPAVE results showed that the section with the tent covering has higher reliability than the section without the tent covering by 22.5%. In details, reliability is increased 72.5% (without the tent covering) to 95% (with the tent covering).

  • PDF

Comparison of the Pavement Performance for Concrete Overlay and Asphalt Overlay on Aged Cement Concrete Pavement (노후화된 시멘트 콘크리트 포장에 대한 콘크리트 및 아스팔트 덧씌우기의 포장성능 비교)

  • Lee, Seung-Woo;Son, Hyeon-Jang
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • More than sixty percentage of highway in South Korea were constructed by concrete pavements and more than half of the concrete pavements were twenty years or older. Maintenance and rehabilitation of aged cement concrete pavements required early transportation opening due to difficulty of preparing bypass roads, given South Korea's transportation condition and so far, mostly asphalt concrete overlay has been used. However, asphalt concrete pavement maintenance and rehabilitation is costly because of early damage and at the same time, it causes inconvenience to the road users. Recently, as an effective method of rehabilitation for aged cement concrete pavement, bonded concrete overlay is being attempted. Therefore, utilizing various data on year-by-year basis is needed to rationally analyze of the damage on asphalt concrete overlay and bonded concrete overlay is necessary. However, in South Korea database of Serviceability damage on asphalt concrete overlay and bonded concrete overlay does not exist. In this research, performance is evaluated by the LTPP (Long Term Pavement Performance) Data of U.S.A, which accumulated various damage data of asphalt concrete overlay and bonded concrete overlay. However, the pattern distress of asphalt concrete overlay and bonded concrete overlay are different. Therefore, the pavement distress data of each section is collected into database and distress are calculated PCI(Pavement Condition Index) in order to compare life of asphalt concrete overlay and bonded concrete overlay.

The Study On Customization for Domestic Application of Micro PAVER (Micro PAVER의 국내 적용을 위한 적정화에 대한 연구)

  • An, Deok-Soon;Kwon, Soo-Ahn;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.21-29
    • /
    • 2003
  • The management of existing airfield pavement information has currently become difficult and the maintenance cost has increased over time due to the long-term performance. It is needed to develop the method for effective budget allocation and systematic airfield pavement management services. The objectives of this paper are to introduce Micro PAVER, one of the popular pavement management systems, into our management system and customize Micro PAVER based on our environment and pavement management level. This study focused on the analysis on logics and structures of Micro PAVER and customization of important parts in the program using the existing pavement evaluation data and survey method. Customized items selected in this study included the pavement deterioration prediction models, critical PCI, maintenance cost by PCI, maintenance or rehabilitation method and unit cost, and PCI rank.

  • PDF

Evaluation of Traffic Load and Moisture-Induced Nonlinear In-situ Stress on Pavement Foundation Layers (도로기초에서 교통 및 환경하중에 의한 비선형 현장응력 평가)

  • Park, Seong-Wan;Hwang, Kyu-Young;Jeong, Mun-Kyoung;Seo, Young-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.47-54
    • /
    • 2009
  • Better understanding of in-situ mechanical behavior of pavement foundations is very important to predict long-term effects on the system performance of transport infrastructure. For this purpose resilient stiffness characterization of geomaterials is needed to properly adopt such mechanistic analysis under both traffic and environmental loadings. In this paper in-situ monitoring data from KHC test road were used to analyze the non-linear response using finite element method for a selected constitutive model of foundation geomaterials, and the results were compared with the field data.

An Evaluation of Field Performance of Environmentally Friendly Asphalt Pavement (친환경 아스팔트 도로포장의 현장 공용성 분석)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 2013
  • Warm mix asphalt(WMA), which is produced at lower temperatures than hot mix asphalt, has advantages in reductions of fuel consumption and greenhouse-gas emission. In this study, field tests such as skid resistance, rutting(permanent deformation), and roughness were conducted for analysis of long-term field performance of modified warm mix asphalt pavement. Skid resistance after 20 months represents the result similar to initial performance results but rutting and roughness decreased somewhat depending on the period of performance. Measurement results of permanent deformation and roughness could be acceptable because measured pavement location is bus lane that a lot of buses pass and stop. There were no cracks after 11 months, but some minor cracks were observed after 20 months. These results were influenced by increased crack resistance due to fiber addition.

Long-term Performance of Highway Embankment Using Tire Shred-Sandy Soil Mixture (재생혼합토(Tire Shred-Sandy Soil Mixture)로 조성된 도로성토구조물의 장기성능)

  • Koh, Taehoon;Hwang, Seonkeun;Yoon, Sungmin;Park, Heemun;Lee, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • In this paper, the long-term performance of highway embankment using tire shred-sandy soil mixture as a lightweight fill material was evaluated through the field monitoring and field test programs. A tire shred-sandy soil embankment was constructed to support a four-lane highway in Indiana, which was built with a 50 : 50 volumetric ratio of tire shreds (maximum particle dimension of 76 mm) and sandy soil (SP, USCS). After opening of the road for traffic, no noticeable differential settlement and lateral deformation were observed, and no adverse environmental impact on temperature was detected as a result of the construction of the tire shred-sandy soil embankment. Moreover, FWD test results showed that tire shred-sandy soil mixture provides bearing capacity comparable to that of conventional fill and meets the criterion for a design life of 20 years.

  • PDF

Vibration Properties of Concrete Overlays using RS-LMC (초속경 LMC를 이용한 콘크리트 포장의 진동특성)

  • Kim, Min-June;Shin, Geun-Ock;Joo, Nak-Chin;Lee, Gwang-Jo;Jeong, Je-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.571-579
    • /
    • 2016
  • RS-LMC (Rapid Setting Latex Modified Concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid pavement could be opened to the traffic after 3 hours of curing. Although the field performance of RS-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, the crack by vibration of vehicles have been happened on the overlay of bridges in technical reports. In this study, experimental research was carried out to evaluate the vibration properties of RS-LMC overlays by using P.S.T (Pavement Shaking Table). Total 12 specimens were tested and the variables are Latex-cement ratio (L/C) and amplitude of vibration. The result shows that the number of cracks and the total length of cracks are reduced as the increase of Latex-cement ratio (L/C) until 15%. And the crack occurs at a very small strain than the proposed values by Walter, D, G and design codes.

Effect of temperature and moisture on curling of early age concrete slabs (재령 초기 콘크리트 슬래브의 컬링에 미치는 온도와 수분의 영향)

  • Sun, Ren-Juan;Nam, Young-Kug;Hong, Seung-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-115
    • /
    • 2008
  • It is known that the long-term behavior and performance of jointed concrete pavement due to slab curling are affected by the environmental factors such as temperature, moisture, and so on. However, any relationships between the curling and its factors have not been defined clearly yet because of insufficient detailed investigation. The temperature, relative humidity, strain, vertical displacement of a concrete slab, and horizontal movement of its transverse joints were investigated by various sensors and devices instrumented in the slab of a concrete pavement section constructed for this study. The constraint of the curling by joint stiffness was investigated in addition to effect of the temperature and moisture on the early aged concrete slab by analyzing the field data measured for approximately 4days from concrete placement. The curling of the concrete slab showed 24hour cycles mainly because of the temperature effect, and the upward curling gradually increased because of the long-term effect of drying shrinkage of the concrete. The magnitude and variation of the curling were significantly affected by the joint stiffness which is comprised of aggregate interlocking and other factors. The effect of the variation of the seasonal joint stiffness varying with the temperature and long-term drying shrinkage on the slab curling will be investigated as a further study.

  • PDF

Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing (비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Na, Il-ho;Lee, Sung-Jin;Yoon, Ji-Hyeon;Kim, Kwang-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.