• Title/Summary/Keyword: long-span slab

Search Result 77, Processing Time 0.03 seconds

Practical Vibration Analysis of Deck Floor Slab (데크 바닥판 구조물의 실용적인 진동해석)

  • Kim, Gee-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • As long-span and light-weight deck floor slab are flexible and have low inherent damping, the significant floor vibration could be induced by residents' activities. These floor vibrations affect to safety and serviceability of building structures. So the vibration criteria are applied to the quality assessment of building structure. Therefore, the accurate vibration analysis should be performed for the correct assessment of deck floor slab. In this paper, practical analysis method with considering orthotropic rigidity of deck floor is proposed tot the accurate vibration analysis of dock floor slabs with form deck plates.

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

Evaluation on the Vibration Performance for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 중공슬래브의 진동성능에 대한 실물실험 평가)

  • Cho, Seung-Ho;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2017
  • The possibility to development of floor vibration problem is larger in case of long span structure under service loads. Therefore, to improve the vibration performance of the floor, increasing of its thickness is a common method. But, increasing of thickness can lead to increase of slab self weight and reduce the effectiveness of the building. For this reason, attention for voided slab which reduces the self-weight is increasing. Hence, voided deck slab combined with deck plate and polystyrene void foam which has buoyancy prevention capacity and much developed construct ability has bee developed. By using the developed voided slab, vibration performance of a mock-up building structure has been investigated in the current study. The results according to analysis showed that they can be implemented in living and bedroom which are considered as 1st grade on the basis of "Residential Evaluation Guidelines for Vibration of Buildings" by the Architectural Institute of Japan.

Evaluation of Horizontal Shear Strength of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete (프리스트레스트 중공 슬래브와 현장타설된 토핑콘크리트의 수평전단성능 평가)

  • Im, Ju-Hyeuk;Park, Min-Kook;Lee, Deuck-Hang;Seo, Soo-Yeon;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Prestressed hollow-core (PHC) slabs are structurally-optimized lightweight precast floor members for long-span concrete structures, which are widely used in construction markets. In Korea, the PHC slabs have been often used with cast-in-place (CIP) topping concrete as a composite slab system. However, the PHC slab members produced by extrusion method use concrete having very low slump, and it is very difficult to make sufficient roughness on the surface as well as to provide shear connectors. In this study, a large number of push-off tests was conducted to evaluate interfacial shear strengths between PHC slabs and CIP topping concrete with the key variable of surface roughness. In addition, the horizontal shear strengths specified in the various design codes were evaluated by comparing to the test results that were collected from literature.

Shear Performance of Board-type Two-way Voided Slab (일체형 중공재의 중공부 내부형상에 따른 이방향 중공슬래브의 전단성능 평가)

  • Choi, Hyeon-Min;Park, Tae-Won;Paik, In-Kwan;Kim, Je-Sub;Han, Ju-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2015
  • Currently, social demands for long span building structures are increasing due to architectural planning purposes and economic efficiency. As a result, lighter board-type voiding materials were suggested. With the use of board-type voiding materials, a slab is able to become light weight and convenient. This process efficiently eliminates concrete where it is not required; considerably diminishing dead weight while maintaining the flexural strength of the slab. The reduction in concrete also allows for overall cost reductions and design flexibility. Also it can be ease with fixing the voided material that is composed of one body form. Although board-type voiding materials are ideal, the top and bottom concrete plates lack integrity. Because of this, test results show horizontal cracking towards the tops and bottoms of the concrete columns, or webs, connecting the slabs. The key to correcting this problem is to increase the shear strength. In order to increase the shear strength of the structure, horizontal shear area must increase. R70(100)-D-F has the largest horizontal shear area as it also shows stronger strength. As a result, shear strength ($V_{nh}$) is dependent on the horizontal shear area (N). $V_{nh}={\alpha}{\times}0.16{\sqrt{f_{ck}}}{\frac{{\pi}D^2}{4}}{\times}N({\alpha}=1.8125)$. The web columns have a shear span to depth ratio (a/d) that is less than 2; which classifies it as a deep beam. In this case, however, the shear strength of the deep beams may be as much as 2 to 3 times greater than that predicated conventional equations developed for members of normal proportions. As a result, ${\alpha}$ is suggested as an extra coefficient in the equation for shear strength ($V_{nh}$).

Estimation of Fatigue safety for PSC Bridge Decks (PSC 바닥판의 피로 안전성 평가)

  • 김영진;이정우;주봉철;김병석;박성용;이필구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.525-530
    • /
    • 2002
  • This study is peformed to propose the slab deck for the composite bridge with two girders. Considering the characteristics of the long span and the construction conditions in korea, a cast-in-place PSC deck was proposed for that bridge. To examine structural behaviors and safety of the proposed PSC deck, two real scale partitions of deck(12m$\times$3.2m) were tested under the fatigue loading. In the test, the failure mode and behaviors of each specimen, and the ultimate load carrying capacity of the two-girder-bridge deck were identified. Generally, the failure of concrete bridge deck is caused by the local punching shear stress resulting from the moving wheel load. Even though its ultimate flexural capacity is sufficiently larger than the demand, it could be failed by the punching shear fatigue. Therefore, the fatigue safety of the proposed PSC deck should be checked.

  • PDF

The Application Of F.C.M(Free Cantilever Method) Case Study Of The Railway Bridge (철도교량 F.C.M(Free Cantilever Method) 공법 시공사례 연구)

  • Kwon, Soon-Seob;Kim, Kyong-Yeon;Choi, Dong-Kee;Jeong, In-Choul;Shin, Sang-Chul
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.562-567
    • /
    • 2005
  • F.C.M applied from Jin Jung Li to Yang Su Li(660m) in Puk Han River Bridge(1,414m) construction part is a construction method on the double-track construction which is the third section part of work, called Chung Ang Railroad Line(Deok-So${\sim}$Won-Ju). This method is the beginning application on Railroad Bridge. After completing upper slab structure, there are several following works such as setting up ballast, sleepers and laying long rails. So it is important to consider the properties of Railroad Bridge while designing the length of bridge and its single span. After the physical process study the shrinkage and creep of concrete, bending up by prestressing in general PSM bridge, relaxation of tendons as time goes by after post-tension, the conclusion of such a study is applied to the Puk-Han River Bridge in this construction field.

  • PDF

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

An Experimental Study on the Serviceability Evaluation with Vibration Test of RC Slab (진동실험을 통한 슬래브구조물의 사용성 평가)

  • Kim, Dongbaek;Ryu, Gichan
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.312-318
    • /
    • 2014
  • Recent building structures are superior in its ability but they are light weight and long span, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However, recent high-rise apartment slabs are mostly light and long, the serviceability of RC slabs due to vibration could be a problem. In this paper, a basic investigation about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted for natural frequency of building, for example load of two persons walking and one person leaping etc.