• Title/Summary/Keyword: logistic model

Search Result 1,976, Processing Time 0.032 seconds

Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model (로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가)

  • Rahnuma, Bintae Rashid Urmi;Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

동북아 항만간 협력을 위한 PLCM에 대한 연구

  • Choi Hyeong Rim;Park Nam Gyu;Park Yong Seong
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2004.05a
    • /
    • pp.138-149
    • /
    • 2004
  • In this research we present a new model, PLCM(Cort-Logistics Chain Management), which can cooperate each other in the port-logistic industry that occupy a heavy rain in the Northeast Asian economy. PLCM(Port-Logistics Chain Management) synthetically manages the logistic chain and information laying stress on the port. Unlike SCM, which hat a vertical relationship between the main groups to cooperate each other, PLCM has a horizontal relationchip between the ports to achieve common purpose and to improve their whole competitive power. In this research we present a concept of PLCM and a specific plan to develop a system for PLCM targetting Pusan, Shanghai, and Tokyo Port which occupy a heavy rain in the Northeast Asian port industry. This system is composed of integrated information system and EDI document exchange system according to the special quality of user's request information. And in order to prove its feasibility and validity, the case study sailing from Shanghai to Busan has been applied to this study.

  • PDF

V-mask Type Criterion for Identification of Outliers In Logistic Regression

  • Kim Bu-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.625-634
    • /
    • 2005
  • A procedure is proposed to identify multiple outliers in the logistic regression. It detects the leverage points by means of hierarchical clustering of the robust distances based on the minimum covariance determinant estimator, and then it employs a V-mask type criterion on the scatter plot of robust residuals against robust distances to classify the observations into vertical outliers, bad leverage points, good leverage points, and regular points. Effectiveness of the proposed procedure is evaluated on the basis of the classic and artificial data sets, and it is shown that the procedure deals very well with the masking and swamping effects.

Churn Prediction Model using Logistic Regression (Logistic Regression을 이용한 이탈고객예측모형)

  • Jeong, Han-Na;Park, Hye-Jin;Kim, Nam-Hyeong;Jeon, Chi-Hyeok;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.324-328
    • /
    • 2008
  • 금융산업에서 고객의 이탈비율은 기대수익에 영향을 미친다는 점에서 예측이 필요한 부분이며 최근 들어 정확한 예측을 통한 비용관리가 이루어지면서 고객 이탈을 예측하는 것이 중요한 문제로 떠오르고 있다. 그러나 보험 고객 데이터가 대용량이고 불균형한 출력 값을 갖는 특성으로 인해 기존의 방법으로 예측 모델을 만드는 것이 적합하지 않다. 본 연구에서는 대용량 데이터를 처리하는 데 효과적으로 알려져 있는 Trust-region Newton method를 적용한 로지스틱 회귀분석을 통해 이탈고객을 예측하는 것을 주된 연구로 하며, 불균형한 데이터에서의 예측정확도를 높이기 위해 Oversampling, Clustering, Boosting 등을 이용하여 고객 데이터에 적합한 이탈 고객 예측 모형을 제시하고자 한다.

  • PDF

Testing Hypothesis for the Logistic Model with Estimated Parameters : Modified Tables of Cirticla Values for K-S Type Statistic

  • Hwang, Chung-Sun
    • Journal of the Korean Statistical Society
    • /
    • v.13 no.1
    • /
    • pp.48-56
    • /
    • 1984
  • This paper considers one-sample and two-sample test for the logistic function by means of Kolmororov-Smirnov type statistics. The standard tables used for the Kolmogorov-Smirnov test are valid only when the function is completely specified; but they are not valid if the parameters of function are estimated from the sample. This note presents modified tables for the Kolmogorov-Sminov type staistic. These tables can be used to test the hypothesis that a sample comes from a logistic function when shape parameter $(\alpha)$ and location parameter $(\beta)$ must be estimated from the sample by the method of maximum likelihood. Monte Carlo method is employed to calculate the criticla values of the test. The tables of the critical values are provided.

  • PDF

Bilevel-programming based failure-censored ramp-stress ALTSP for the log-logistic distribution with warranty cost

  • Srivastava, P.W.;Sharma, D.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.85-105
    • /
    • 2016
  • In this paper accelerated life testing is incorporated in quality control technique of acceptance sampling plan to induce early failures in high reliability products.Stress under accelerated condition can be applied in constant-stress, step-stress and progressive-stress or combination of such loadings. A ramp-stress results when stress is increased linearly (from zero) with time. In this paper optimum failure-censored ramp-stress accelerated life test sampling plan for log-logistic distribution has been formulated with cost considerations. The log-logistic distribution has been found appropriate for insulating materials. The optimal plans consist in finding optimum sample size, sample proportion allocated to each stress, and stress rate factor such that producer's and consumer's interests are safeguarded. Variance optimality criterion is used when expected cost per lot is not taken into consideration, and bilevel programming approach is used in cost optimization problems. The methods developed have been illustrated using some numerical examples, and sensitivity analyses carried out in the context of ramp-stress ALTSP based on variable SSP for proportion nonconforming.

Likelihood-Based Inference of Random Effects and Application in Logistic Regression (우도에 기반한 임의효과에 대한 추론과 로지스틱 회귀모형에서의 응용)

  • Kim, Gwangsu
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.269-279
    • /
    • 2015
  • This paper considers inferences of random effects. We show that the proposed confidence distribution (CD) performs well in logistic regression for random intercepts with small samples. Real data analyses are also done to identify the subject effects clearly.

Blur Detection through Multinomial Logistic Regression based Adaptive Threshold

  • Mahmood, Muhammad Tariq;Siddiqui, Shahbaz Ahmed;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.110-115
    • /
    • 2019
  • Blur detection and segmentation play vital role in many computer vision applications. Among various methods, local binary pattern based methods provide reasonable blur detection results. However, in conventional local binary pattern based methods, the blur map is computed by using a fixed threshold irrespective of the type and level of blur. It may not be suitable for images with variations in imaging conditions and blur. In this paper we propose an effective method based on local binary pattern with adaptive threshold for blur detection. The adaptive threshold is computed based on the model learned through the multinomial logistic regression. The performance of the proposed method is evaluated using different datasets. The comparative analysis not only demonstrates the effectiveness of the proposed method but also exhibits it superiority over the existing methods.

Identifying the Optimal Machine Learning Algorithm for Breast Cancer Prediction

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.80-88
    • /
    • 2024
  • Breast cancer remains a significant global health burden, necessitating accurate and timely detection for improved patient outcomes. Machine learning techniques have demonstrated remarkable potential in assisting breast cancer diagnosis by learning complex patterns from multi-modal patient data. This study comprehensively evaluates several popular machine learning models, including logistic regression, decision trees, random forests, support vector machines (SVMs), naive Bayes, k-nearest neighbors (KNN), XGBoost, and ensemble methods for breast cancer prediction using the Wisconsin Breast Cancer Dataset (WBCD). Through rigorous benchmarking across metrics like accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), we identify the naive Bayes classifier as the top-performing model, achieving an accuracy of 0.974, F1-score of 0.979, and highest AUC of 0.988. Other strong performers include logistic regression, random forests, and XGBoost, with AUC values exceeding 0.95. Our findings showcase the significant potential of machine learning, particularly the robust naive Bayes algorithm, to provide highly accurate and reliable breast cancer screening from fine needle aspirate (FNA) samples, ultimately enabling earlier intervention and optimized treatment strategies.

Application of Crossover Analysis-logistic Regression in the Assessment of Gene- environmental Interactions for Colorectal Cancer

  • Wu, Ya-Zhou;Yang, Huan;Zhang, Ling;Zhang, Yan-Qi;Liu, Ling;Yi, Dong;Cao, Jia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2031-2037
    • /
    • 2012
  • Background: Analysis of gene-gene and gene-environment interactions for complex multifactorial human disease faces challenges regarding statistical methodology. One major difficulty is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes or environmental exposures. Based on our previous case-control study in Chongqing of China, we have found increased risk of colorectal cancer exists in individuals carrying a novel homozygous TT at locus rs1329149 and known homozygous AA at locus rs671. Methods: In this study, we proposed statistical method-crossover analysis in combination with logistic regression model, to further analyze our data and focus on assessing gene-environmental interactions for colorectal cancer. Results: The results of the crossover analysis showed that there are possible multiplicative interactions between loci rs671 and rs1329149 with alcohol consumption. Multifactorial logistic regression analysis also validated that loci rs671 and rs1329149 both exhibited a multiplicative interaction with alcohol consumption. Moreover, we also found additive interactions between any pair of two factors (among the four risk factors: gene loci rs671, rs1329149, age and alcohol consumption) through the crossover analysis, which was not evident on logistic regression. Conclusions: In conclusion, the method based on crossover analysis-logistic regression is successful in assessing additive and multiplicative gene-environment interactions, and in revealing synergistic effects of gene loci rs671 and rs1329149 with alcohol consumption in the pathogenesis and development of colorectal cancer.