Browse > Article
http://dx.doi.org/10.5351/CKSS.2005.12.3.625

V-mask Type Criterion for Identification of Outliers In Logistic Regression  

Kim Bu-Yong (Department of Statistics, Sookmyung Women's University)
Publication Information
Communications for Statistical Applications and Methods / v.12, no.3, 2005 , pp. 625-634 More about this Journal
Abstract
A procedure is proposed to identify multiple outliers in the logistic regression. It detects the leverage points by means of hierarchical clustering of the robust distances based on the minimum covariance determinant estimator, and then it employs a V-mask type criterion on the scatter plot of robust residuals against robust distances to classify the observations into vertical outliers, bad leverage points, good leverage points, and regular points. Effectiveness of the proposed procedure is evaluated on the basis of the classic and artificial data sets, and it is shown that the procedure deals very well with the masking and swamping effects.
Keywords
logistic model; outlier; robust distance; clustering; V-mask;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gnanadesikan, R. and Kettenring, J.(1972). Robust estimates, residuals, and outlier detection with multiresponse data, Biometrics, Vol. 28, 81-124   DOI   ScienceOn
2 Rocke, D. M. and Woodruff, D. L.(1997). Robust estimation of multivariate location and shape. Journal of Statistical Planning and Inference, Vol. 57, 245-255   DOI   ScienceOn
3 Rousseeuw, P. J.(1985). Multivariate estimation with high breakdown point, Mathematical Statistics and Applications, Vol. B, eds. W. Grossmann, G. Pflug, I. Vincze, and W. Werz
4 Rousseeuw, P. J. and Driessen, K.(1999). A fast algorithm for the minimum covariance determinant estimator, Technometrics, Vol. 41, 212-223   DOI   ScienceOn
5 Rousseeuw, P. J. and Leroy, A. M.(2003). Robust Regression and Outlier Detection, Wiley- Interscience
6 Viljoen, H. and Venter, J. H.(2002). Identifying multivariate discordant observations: a computer-intensive approach, Computational Statistics & Data Analysis, Vol. 40, 159-172   DOI   ScienceOn
7 Woodruff, D. L. and Rocke, D. M.(1994). Computable robust estimation of multivariate location and shape in high dimension using compound estimators, Journal of the American Statistical Association, Vol. 89, 888-896   DOI   ScienceOn
8 김순귀, 정동빈, 박영술(2003). SPSS를 활용한 로지스틱회귀모형의 이해와 응용, 데이터솔루션
9 Becker, C. and Gather, U.(1999), The masking breakdown point of multivariate outlier identification rules, Journal of the American Statistical Association, Vol. 94, 947-955   DOI   ScienceOn
10 Hadi, A. S.(1994). A modification of a method for the detection of outliers in multivariate samples, Journal of the Royal Statistical Society, Vol. 56, 393-396
11 Hardin, J. and Rocke, D. M.(2004). Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator, Computational Statistics & Data Analysis, Vol. 44, 625-638   DOI   ScienceOn
12 Hosmer, D. W. and Lemeshow, S.(2000). Applied Logistic Regression, John Wiley & Sons
13 Mardia, K., Kent, J. and Bibby, J.(1979). Multivariate Analysis, Academic Press
14 Jennings, D. E.(1986). Outliers and residual distributions in logistic regression, Journal of the American Statistical Association, Vol. 81, 987-990   DOI   ScienceOn
15 Kim, B. Y. and Oh, M. H.(2004). Identification of regression outliers based on the clustering of LMS-residual plots, The Korean Communications in Statistics, Vol. 11, 485-494   DOI   ScienceOn
16 Kosinski, A. S.(1999). A procedure for the detection of multivariate outliers, Computational Statistics & Data Analysis, Vol. 29, 145-161   DOI   ScienceOn
17 Pregibon, D.(1981) Logistic regression diagnostics, The Annals of Statistics, Vol. 9, 705-724   DOI   ScienceOn
18 Pregibon, D.(1982). Resistant fits for some commonly used logistic models with medical applications, Biometrics, Vol. 38, 485-498   DOI   ScienceOn
19 Rocke, D. M. and Woodruff, D. L.(1996). Identification of outliers in multivariate data, Journal of the American Statistical Association, Vol. 91, 1047-1061   DOI   ScienceOn