{Research Paper) Journal of the Korean
Statistical Society

Vol. 13, No. 1, 1984

Testing Hypothesis for the Logistic Model with
Estimated Parameters: Modified Tables of
Critical Values for K-S Type Statistic
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ABSTRACT

This paper considers one-sample and two-sample test for the logistic function by
means of Kolmogorov-Smirnov type statistics. The standard tables used for the
Kolmogorov-Smirnov test are valid only when the function is completely specified;
but they are not valid if the parameters of function are estimated from the sample.
This note presents modified tables for the Kolmogorov-Smirnov type statistic. These
tables can be used to test the hypothesis that a sample comes from a logistic function
when shape parameter(a) and location parameter (8) must be estimated from the sample
by the method of maximum likelihood. Monte Carlo method is employed to calculate
the critical values of the test. The tables of the critical values are provided.

1. Introduction

The logistic growth function

1
1+ peex?

has been extensively studied in certain applications of economics, biology and ecology.

P= —oox oo, a>0, >0, 1.D

Since 1920 fitting a logistic curve has been attempted utilizing such methods as the least-
squares, the maximum likelihood, and others under the assumption that the logistic model
is correct, However, the validity of the logistic model is not determined. Therefore, it is
interesting to investigate whether or not a sample came from a logistic function, or to
test whether or not the two independent samples came from the same logistic population,

The former is called the one-sample test, and the latter the two-sample test
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The logistic one-sample test can be considered as a test of goodness of fit between the
sample logistic function and the population logistic function. This test involves using the
value of the observed probability of the sample logistic function for each x;, and
determining the point ‘x; at which the “expected and sample estimated p.'s” show the
greatest divergence,

The two-sample test can be conceived of a test of the agreement between two-test data
samples. If the two samples have been drawn from the same logistic function, the sample
estimates of the probabilities of success p: for both samples may be expected to be fairly
close to each other. ¥ these values are “too far apart” at any point of x, the data suggest
that the samples came from different logistic populations, Thus, a large difference between
any two different estimates of p: would constitute an evidence for rejecting the null
hypothesis that the two samples came from the same logistic population.

To develop these tests, the two sample test will be considered first, It is known that

the “Standard Logistic Function” is defined as

N 1
b= 1+e??

The logistic function can be standardized by taking a=1 and §=1, or by simply taking

—oo <L y<eo, (1.2

y=—log 8+ax in (1.1). For the two samples, @ and S values are estimated from the
sample statistics (ao, bo) and (ai, b,) respectively, by means of the maximum likelihood
or equivalent methods and by plugging these estimates into (1.2) the maximum deviation
D is then computed by:

D=Max|p(»)—p:(M1,
where p,(y) is the estimate of the probability of success at x=x; obtained from the
first sample, and p,(y) is obtained from the second sample.

The following rule is set up: If the value of D exceeds the critical value in the table
the null hypothesis will be rejected with conclusion that the sample came from different
logistic populations,

The test procedures are summarized as follows:

1. Obtain a sample of #; dichotomous observations at each x..

2. Estimate the parameters (a; and 8, j=0,1) from the two samples.
3. Evaluate y,: and yy,

where yoi= —log be+a, x; and y;;=—log b;+a; x..

4. Determine D, where D=Max|po(30)—p:1(311.

5. If the value of D exceeds the critical value in the table, reject the hypothesis.
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Critical values of D (see Appendix) are calculated by the sampling distribution of D
through Monte Carlo method by using the standard logistic model., The significance of
a given value of D depends on # and M (n is the sample size at each x;, and M is the
number of x). In the case of the sample size the value of D that is not listed in the
table can be approximated by interpolation, The calculation was performed on the CDC
CYBER 70/74.

When the values are compared with those in the standard table for the Kolmogorov-
Smirnov test (Birubaum (1952), Massey (1951)) it is found that the ratio of the Monte
Carolo values to the standard values remains relatively fixed., It appears that the Monte
Carlo critical values are in most cases approximately half the standard values, especially
for the value of M=5, and for the value of M=7, the critical values are approximately
two thirds the standard values,

As a next step, the power of the test will be examined by using Monte Carlo method,
The probabilitiy of rejecting the hypothesis of logistic model using D Statistic as
compared with Chi-Square Statistic when sample size is 30 is given in Table 1. This
tabled values reveal that the power of our K-S type test is larger than that of x%—test
if the underlying population is normal The Monte Carlo calculations are based upon 1000

sample runs for each population,

Table 1. Power of Test

K-S Type Test Chi-Square Test
Underlying Population
a=,05 a=,10 a=,05 a=.,10
Logistic .05 .10 .05 .10
Normal .31 .42 .25 .30

2. One Sample Test

Let Py(x) be a observed probability and P, (x) :Is(x) be the logistic function with &=a,
shape parameter, and §=4, location parameter. The parameters a and b are estimated
from the sample by using maximum likelihood estimate through Newton-Raphson iteration
or equivalent methods, The value of P,( y)=P,(x;)) is the estimated probability at x;,

namely,
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Pl(yi)ZTﬁW, i=l, 2y vens M

where y,:(x)=—logb-+ax;. Under null hypothesis it is assumed that the sample logistic
function has been drawn from the specified logistic function. It is expected that P,(y)
should be close to P,(x) for every value of x, Under H, it is expected that the difference
between Po(x) and P,(y) should be small for all x’s, The H, is rejected if the difference
is too large for some x in the sense of absolute value. This test is based on the largest
value of |Po(x)—P(y)|, which is called the K-S type maximum absolute deviation, D,
where D=Max|P,(x)—P:(»)|.

3. Example

3.1 Example 1 (One-Sample Test)

The data to illustrate this test are obtained from a random sample generated from a
logistic model for which the parameters are arbitrarily specified as following:

a=2 and §=50;

x=.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5;

M=7(We have seven points of x);

n=30 (30 observations at x).

A sample function generated by a random sample is shown in Table 2.

Table 2. Sample Data

) X # of 0 £ of 1 Py(x)

1 0.5 29 1 . 03333
2 1.0 24 6 . 20000
3 1.5 20 10 . 33333
4 2.0 14 16 . 53333
5 2.5 8 22 .73333
6 3.0 2 28 . 93333
7 3.5 1 29 . 96667

The parameters « and § in this sample function estimated by the direct maximum
likelihood method are:
a=1, 87486 b=134. 38890

Now ¥, Pi(yi:) values are calculated as follows:

yi=—log 34.3889+1. 87486 X;
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Pi(y)=

The largest of these difference, D, is obtained from the last column in Table 3,

which is

1
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1+e_yi’ 1= 149

ssen

D=Max|P,(x)—P,(y)| =0. 04371.

This value is compared with the . tabulated value for the specified level of significance,
a=.05, i.e., Da osmez,n=300=. 175. Since the tabulated value D=_175 is greater than the
calculated value of D=, (04371, the null hypothesis of the logistic "model is not rejected

at 5%level of significance, and the function is estimated by

P:

1

1+34. 38895745

Table 3. Calculation of D statistic

M=7

a=1,87486, b=234. 38890
H X Po(x) ¥ Pi(y) D@)
1 .5 . 03333 —2.60030 . 06912 . 03579
2 1.0 . 20000 —1. 66287 . 15938 . 04062
3 1.5 . 33333 —. 72544 . 32620 . 00713
4 2.0 . 53333 . 21199 . 55230 . 01897
5 2.5 . 73333 1.14942 . 75940 . 02607
6 3.0 . 93333 2, 08685 . 88962 . 04371
7 3.5 . 96667 3.02428 . 95366 . 01301

. 3.2 Example 2 (Two-Sample Test)

The precedure of the two-sample test follows the same pattern as that of the one-sample

test: but this time it is necessary to estimate the parameters (@, f), (ai, Bu),

Table 4. Second Sample Data
7 X # of 0 # of 1 I Sample Pu(x:) .
1 .5 27 3 . 10000
2 1.0 24 6 . 20000
3 1.5 23 7 . 23333
4 2,0 17 13 . 43333
5 2.5 15 15 . 50000
6 3.0 10 20 . 66667
7 3.5 9 21 . 70000
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Table 5 Calculation of D Statistic

M=7

a,=1, 87486, b,=34.38830

a,=1.01112, &,=12.01860

) Xi Yai Py(300) i P(51) D(@@)

1 .5 —2. 60030 . 06812 —1. 98090 .12122 . 05310
2 1.0 —1. 66287 . 15938 —1.47534 . 18613 . 02675
3 1.5 —. 72544 . 32620 —. 96978 . 27433 . 05187
4 2.0 .21199 . 55280 —. 46422 . 38533 . 16747
5 2.5 1.14342 . 75940 . 04134 . 51033 . 24907
6 3.0 2.08685 . 88962 . 54690 . 63342 . 25620
7 3.5 \ 3.02422 . 95366 1. 05246 . 74125 . 21241

independently from two different observed samples. The sample data of Table 2 will be
used as the first sample, and the newly generated second set of sample data is given in
Table 4,
Using the direct maximum likelihood estimate, the following results are obtained:
First sample......a,=1. 87486, bo=34. 38890,
Second sample......a;=1.01112, b1¥12.01860.

‘Thren the values for ¥oi, Po(Yoi), Yui and P,(y,:) can be computed through appropriate
substitutio;l.

Consider the difference, D(I), in the last column of Table 5. The largest of the
differences is .

D=Max|P,(y,)—P:(3)|=.256.

Reference to the D tables (Appendix) reveals that the critical value associated with
M=7, n=30 and a=.05 is .175. Since the D value is larger thah the critical value,
the null hypothesis of equal logistic population is rejected: that is, there is a significant
difference between these two logistic functions. Thus, it is concluded that the two samples
have not come from the same function, and that the test data should not be considered as

coming from the same logistic.

4. Appendix: Table of Critical Values of D

The values of D given in the tables are critical values associated with selected values

of n, each table using a different value of M. Any value of D which is equal to or
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Table of Critical Values of D

(M=5)
Sample Size Level of Significance for D=Max|Py(3)—-P,(»|
of Each y
n .20 .15 .10 .05 .01
. 196 .215 .251 . 296 . 400
8 . 176 .190 . 220 .252 . 340
10 . 162 . 174 . 196 . 227 . 300
12 . 150 . 160 .179 . 207 . 272
15 .134 . 143 . 160 . 186 . 245
20 . 116 .125 . 137 . 162 .213
25 . 104 . 113 .123 . 145 . 188
30 . 092 . 101 L111 . 132 . 170
35 . 085 . 094 . 104 .122 .158
40 .079 . 087 . 097 . 113 . 149
45 . 075 . 082 . 091 . 105 . 140
50 .071 . 078 . 086 . 099 .132
100 . 052 . 057 . 064 . 072 . 087
Table of Critical Values of D
M=7)
Sample Size Level of Significance for D=Max|P,(»)—P(»)|
of Each y

n .20 .15 .10 .05 .01
5 .283 .303 . 326 . 359 . 420
. 239 . 254 .276 .308 . 380
10 . 219 .233 . 254 . 285 . 353
12 . 202 .216 . 236 . 267 . 328
15 . 180 . 190 .120 . 240 .295
20 .154 . 163 . 175 . 205 . 250
25 . 143 . 152 . 163 . 190 . 233
30 .132 .141 .152 .175 .216
35 .122 .131 . 142 . 160 .201
40 .112 121 .132 . 147 . 186
45 . 105 . 114 . 124 . 138 .172
50 .099 .108 .116 .129 . 160
100 .072 . 076 . 084 . 092 . 111

greater than the tabulated value is significant at the indicated level of significance, These
values were obtained as a result of the Monte Carlo calculation, using 2,000 samples,
n is the numbers of samples at x; (n=5, 8, 10, 12, 15, 20, 25, 30, 40, 45, 50, 100). For
the sample size that is not shown in the table the value of D can be approximated by

_interpolation,
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(M=9)
Sample Size Level of Significance for D=Max|Py(3)—P:(»)]
of Each y

n .20 .15 .10 .05 .01

5 . 306 . 324 . 349 . 389 . 445

. 265 . 282 . 305 . 341 . 395

10 . 240 . 256 .276 . 306 . 360
12 . 223 .238 . 258 . 285 . 332
15 . 200 .213 .233 . 256 . 300
20 .173 .183 .197 . 217 . 265
25 . 158 . 167 .180 . 200 .235
30 . 145 . 154 . 164 . 184 .213
35 . 134 . 143 .153 .172 . 197
40 .124 . 133 . 143 . 160 . 185
45 .116 .124 .133 . 150 . 175
50 .110 . 115 . 124 . 140 . 165
100 . 079 . 083 . 090 . 102 . 120

Table of Critical Values of D
(M=1D
Sample Size Level of Significance for D=Max|Po()—P.(5)!
of each y

n .20 .15 .10 .05 .01

5 . 325 . 343 . 365 . 401 . 466

. 284 . 299 . 318 . 351 . 425

10 . 260 . 274 . 293 . 325 . 393
12 . 238 . 252 . 270 . 301 . 363
15 . 216 . 227 .242 .270 . 323
20 . 190 . 201 .215 . 240 . 280
25 . 166 L177 .191 .215 . 253
30 . 153 .164 . 176 . 196 . 234
35 , 140 . 151 . 162 . 180 .216
40 .132 L1490 .151 . 165 . 201
45 . 125 . 132 . 142 . 155 . 186
50 . 119 . 126 .135 . 148 . 174
100 . 083 . 088 . 095 . 105 V127
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Table of Critical Values of D

(M=15)
Sample Size Level of Significance for D=Max|Py(y)—P,(y)|
of Each y

n .20 .15 .10 .05 .01

5 .335 . 352 . 374 . 405 . 490

. 289 . 305 . 326 . 356 . 435

10 . 265 . 279 . 300 . 329 . 400

12 . 244 . 255 . 276 . 304 . 365

15 .218 . 229 . 249 . 276 . 335

20 .190 . 201 .214 . 237 . 295

25 . 171 . 182 .193 . 214 . 260

30 . 154 . 164 . 175 . 195 . 239

35 . 142 . 151 . 162 . 180 . 220

40 .135 . 143 . 153 .170 . 215

45 .128 . 135 . 145 . 160 . 193

50 .123 . 130 . 140 .154 . 182
100 . 085 . 090 . . 096 . . 108 . 134
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