그동안의 고객 행동에 대한 예측은 주로 고객이 가지는 고정적인 특성을 이용해왔다. 최근에는 점차 고객들의 활동이 오프라인에서 온라인으로 이동하면서 각 고객의 웹 로그를 추적하는 일이 가능해졌다. 그러나 방대한 양의 웹 로그 데이터를 수집할 수 있게 된 반면, 이에 대한 연구는 로그 데이터를 정리하거나 기술적인 특성만을 설명하는 것에 그쳤다. 본 연구에서는 웹사이트 Kaggle에서 제공하는 Airbnb 고객들의 성별, 연령 등의 기본 정보 및 웹 로그가 포함된 데이터셋을 이용하여 첫 숙소 예약까지 걸리는 개인의 의사 결정 시간을 예측하였다. Lasso, SVM, Random Forest, XGBoost 등 다양한 방법론을 활용하여 최적의 모형을 찾고, 웹 로그 데이터의 유무에 따른 예측 오차를 비교하여 웹 로그의 효용성을 확인하였다. 결과적으로 오분류율이 약 20%로 낮은 랜덤 포레스트 분류모형을 최적모형으로 선택하였다. 또한, 웹 로그 데이터를 이용하여 고객 개개인의 행동을 예측한 결과 사용하지 않은 경우와 비교해 예측의 정확도가 최대 두 배 더 높아진 것을 확인할 수 있었다.
Log analysis and monitoring have a significant importance in most of the systems. Log management has core importance in applications like distributed applications, cloud based applications, and applications designed for big data. These applications produce a large number of log files which contain essential information. This information can be used for log analytics to understand the relevant patterns from varying log data. However, they need some tools for the purpose of parsing, storing, and visualizing log informations. "Elasticsearch, Logstash, and Kibana"(ELK Stack) is one of the most popular analyzing tools for log management. For the ingestion of log files configuration files have a key importance, as they cover all the services needed to input, process, and output the log files. However, creating configuration files is sometimes very complicated and time consuming in many applications as it requires domain expertise and manual creation. In this paper, an auto configuration module for Logstash is proposed which aims to auto generate the configuration files for Logstash. The primary purpose of this paper is to provide a mechanism, which can be used to auto generate the configuration files for corresponding log files in less time. The proposed module aims to provide an overall efficiency in the log management system.
보안로그의 활용범위가 다양해짐에 따라 저장된 로그 데이터에 대한 무결성의 중요성이 높아지고 있다. 특히, 저장된 로그 데이터는 시스템에 침입한 공격자들이 자신의 흔적을 없애기 위해 우선적으로 조작되는 대상이다. 키 정보가 노출이 된 이후의 로그 데이터의 안전성은 보장하지 못하지만, 그 이전에 축적된 로그 데이터 무결성의 전방 안전성을 보장하는 다양한 이론적 기법들이 소개되었다. 이런 기법들의 인증태그들은 선형 해시체인을 기반으로 하고 있다. 이 경우 부분 검증이 어렵고, 인증태그 생성속도와 검증속도를 높이기 힘들다. 본 논문에서는, 부분 검증이 용이하고 멀티 스레딩이 적용 가능한 Merkle Tree 기반의 로그인증 메커니즘을 제안한다.
Windows Event Log에는 시스템의 전반적인 동작들을 정의하고 있는 Log이며, 해당 파일에는 사용자의 여러 행위 및 이상 징후를 탐지할 수 있는 데이터가 저장되어 있다. 하지만 행위마다 Event Log가 발생함으로써, 로그들을 분석할 때, 상당한 시간이 소요된다. 따라서 본 연구에서는 NSA에서 발표한 "Spotting the Adversary with Windows Event Log Monitoring"의 주요 Event Log 목록을 바탕으로 XML 기반한 Event Log 분석 도구를 설계 및 구현 하였다.
This study describes a method for analyzing log data generated in a process using process mining techniques. A system for collecting and analyzing a large amount of log data generated in the process of manufacturing an offshore plant piping material was constructed. The analyzed data was visualized through various methods. Through the analysis of the process model, it was evaluated whether the process performance was correctly input. Through the pattern analysis of the log data, it is possible to check beforehand whether the problem process occurred. In addition, we analyzed the process performance data of partner companies and identified the load of their processes. These data can be used as reference data for pipe production allocation. Real-time decision-making is required to cope with the various variances that arise in offshore plant production. To do this, we have built a system that can analyze the log data of real - time system and make decisions.
Communications for Statistical Applications and Methods
/
제5권3호
/
pp.733-742
/
1998
For industrial and medical lifetime data, the generalized log-gamma regression model is considered. Then the Bayesian analysis for the generalized log-gamma regression with censored data are explained and following the data augmentation (Tanner and Wang; 1987), the censored data is replaced by simulated data. To overcome the complicated Bayesian computation, Makov Chain Monte Carlo (MCMC) method is employed. Then some modified algorithms are proposed to implement MCMC. Finally, one example is presented.
방화벽은 대표적인 네트워크 보안 장비로서 대부분의 네트워크 내/외부에 설치되어 패킷의 입/출입을 통제하는 시스템이다. 때문에 이에 저장된 로그 데이터를 분석하는 것은 네트워크 보안연구에 중요한 기초 자료를 제공해 줄 수 있다. 그런데 최근 기술의 발달로 인터넷망의 속도가 향상되고, 네트워크가 대형화 되면서 방화벽에서 저장하는 로그데이터들의 양도 대용량화 또는 빅데이터화 되어 가고 있다. 이러한 추세 속에서, 기존의 전통적인 RDBMS방식으로 로그데이터를 분석하는 데는 한계가 있다. 본 논문은 NoSQL 기반의 MapReduce 설계를 이용한 방화벽 로그 분석기법을 통해 NoSQL방식을 도입하는 것이 대용량 로그 데이터를 더욱 효율적으로 분석할 수 있다는 점을 발견했다. 우리는 기존의 RDBMS방식과의 데이터 처리 성능을 비교하여 NoSQL방식 데이터베이스의 우수한 성능을 입증하였고, 이를 바탕으로 제안하는 설계 기법을 평가하기 위해 3가지 공격 패턴을 선정하고 이를 집계 하여 분석을 수행하는 실험을 통해 제안하는 분석 기법의 성능 및 정확성을 입증하였다.
기업들은 다가오는 데이터 경쟁시대를 이해하고 이에 대비해야 한다며 가트너는 기업의 생존 패러다임에 많은 변화를 요구하고 있다. 또한 통계 알고리즘 기반의 예측분석을 통한 비즈니스 성공 사례들이 발표되면서, 과거 데이터 분석에 따른 사후 조치에서 예측 분석에 의한 선제적 대응으로의 전환은 앞서가고 있는 기업의 필수품이 되어 가고 있다. 이러한 경향은 보안 분석 및 로그 분석 분야에도 영향을 미치고 있으며, 실제로 빅데이터화되고 있는 대용량 로그에 대한 분석과 지능화, 장기화되고 있는 보안 분석에 빅데이터 분석 프레임워크를 활용하는 사례들이 속속 발표되고 있다. 그러나 빅데이터 로그 분석 시스템에 요구되는 모든 기능 및 기술들을 하둡 기반의 빅데이터 플랫폼에서 수용할 수 없는 문제점들이 있어서 독자적인 플랫폼 기반의 빅데이터 로그 분석 제품들이 여전히 시장에 공급되고 있다. 본 논문에서는 이러한 독자적인 빅데이터 로그 분석 시스템을 위한 실시간 및 비실시간 예측 분석 엔진을 탑재하여 사이버 공격에 선제적으로 대응할 수 있는 프레임워크를 제안하고자 한다.
시스템의 장애와 재해로부터 기업의 자산을 보호하는 것은 IT 운영 관리자들이 가장 고려해야 할 사항들 중 하나이다. 그러므로 본 연구는 이러한 재해 복구를 위한 백업 시스템을 제안하였다. 기존의 백업 방식이 데이터베이스의 업데이트가 발생하면 그 이력이 개장 기록(redo log) 파일에 저장이 되고 이 기록파일이 예정된 파일의 크기를 넘어서면 순차적으로 기록보관소 기록(archive log) 파일들로 저장된다. 그러므로 데이터베이스의 변경이 생기는 동안 실시간 변경되는 데이터를 백업받는 과정에 데이터 손실의 오류가 발생할 수 있다. 제안한 백업 시스템은 온라인 개장 기록을 처리기록(transaction log) 데이터베이스로 실시간 백업하고, 기존 백업방법에서 누락 될 수 있는 자료보관소 기록(archive log)으로 백업된다. 그러므로 데이터의 복구 시 온라인으로 개장 기록까지 실시간 복구가 가능하여 데이터의 손실을 최소화 할 수 있을 뿐만 아니라, 멀티스레드 처리방법으로 데이터 복제가 수행되어 시스템의 성능도 향상 시킬 수 있도록 설계하였다. 설계된 백업 시스템의 안정성을 검증하기 위하여 CPN(Coloured Petri Nets)을 도입 하였으며, 백업시스템의 각 수행 단계는 CPN의 그래픽으로 도식화 하고, CPN의 정의와 정리를 기반으로 안정성을 검증하였다.
Journal of the Korean Data and Information Science Society
/
제18권4호
/
pp.1171-1177
/
2007
We consider estimation of the right-tail probability in a log-Laplace random variable, As we derive the density of ratio of two independent log-Laplace random variables, the k-th moment of the ratio is represented by a special mathematical function. and hence variance of the ratio can be represented by a psi-function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.