• Title/Summary/Keyword: locking loop technique

Search Result 15, Processing Time 0.022 seconds

Design of Low Voltage 1.8V, Wide Range 50∼500MHz Delay Locked Loop for DDR SDRAM (DDR SDRAM을 위한 저전압 1.8V 광대역 50∼500MHz Delay Locked Loop의 설계)

  • Koo, In-Jae;Chung, Kang-Min
    • The KIPS Transactions:PartA
    • /
    • v.10A no.3
    • /
    • pp.247-254
    • /
    • 2003
  • This paper describes a Delay Locked Loop (DLL) with low supply voltage and wide lock range for Synchronous DRAM which employs Double Data Rate (DDR) technique for faster data transmission. To obtain high resolution and fast lock-on time, a new type of phase detector is designed. The new counter and lock indicator structure are suggested based on the Dual-clock dual-data Flip Flop (DCDD FF). The DCDD FF reduces the size of counter and lock indicator by about 70%. The delay line is composed of coarse and fine units. By the use of fast phase detector, the coarse delay line can detect minute phase difference of 0.2 nsec and below. Aided further by the new type of 3-step vernier fine delay line, this DLL circuit achieves unprecedented timing resolution of 25psec. This DLL spans wide locking range from 500MHz to 500MHz and generates high-speed clocks with fast lock-on time of less than 5 clocks. When designed using 0.25 um CMOS technology with 1.8V supply voltage, the circuit consumes 32mA at 500MHz locked condition. This circuit can be also used for other applications as well, such as synchronization of high frequency communication systems.

Design of a 40 GHz CMOS Phase-Locked Loop Frequency Synthesizer Using Wide-Band Injection-Locked Frequency Divider (광대역 주입동기식 주파수 분주기 기반 40 GHz CMOS PLL 주파수 합성기 설계)

  • Nam, Woongtae;Sohn, Jihoon;Shin, Hyunchol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.717-724
    • /
    • 2016
  • This paper presents design of a 40 GHz CMOS PLL frequency synthesizer for a 60 GHz sliding-IF RF transceiver. For stable locking over a wide bandwith for a injection-locked frequency divider, an inductive-peaking technique is employed so that it ensures the PLL can safely lock across the very wide tuning range of the VCO. Also, Injection-locked type LC-buffer with low-phase noise and low-power consumption is added in between the VCO and ILFD so that it can block any undesirable interaction and performance degradation between VCO and ILFD. The PLL is designed in 65 nm CMOS precess. It covers from 37.9 to 45.3 GHz of the output frequency. and its power consumption is 74 mA from 1.2 V power supply.

A 0.4-2GHz, Seamless Frequency Tracking controlled Dual-loop digital PLL (0.4-2GHz, Seamless 주파수 트래킹 제어 이중 루프 디지털 PLL)

  • Son, Young-Sang;Lim, Ji-Hoon;Ha, Jong-Chan;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.65-72
    • /
    • 2008
  • This paper proposes a new dual-loop digital PLL(DPLL) using seamless frequency tracking methods. The dual-loop construction, which is composed of the coarse and fine loop for fast locking time and a switching noise suppression, is used successive approximation register technique and TDC. The proposed DPLL in order to compensate the quality of jitter which follows long-term of input frequency is newly added cord conversion frequency tracking method. Also, this DPLL has VCO circuitry consisting of digitally controlled V-I converter and current-control oscillator (CCO) for robust jitter characteristics and wide lock range. The chip is fabricated with Dongbu HiTek $0.18-{\mu}m$ CMOS technology. Its operation range has the wide operation range of 0.4-2GHz and the area of $0.18mm^2$. It shows the peak-to-peak period jitter of 2 psec under no power noise and the power dissipation of 18mW at 2GHz through HSPICE simulation.

Calcaneal Tuberosity Avulsion Fracture after Repair of Achilles Tendon Rupture: A Case Report (아킬레스건 파열 이후에 발생한 종골 결절의 견열골절: 증례 보고)

  • Lee, Sung Hyun;Yi, Young;Kim, Saintpee;Kang, Hong Je
    • Journal of Korean Foot and Ankle Society
    • /
    • v.23 no.4
    • /
    • pp.216-219
    • /
    • 2019
  • In clinical practice, recurrent Achilles ruptures have been noted to occurr at the original ruptured site. However, reports of new developed fresh rupture of the Achilles tendon in other sites are is extremely rare. Our report is about one uncommon case of a traumatic calcaneal tuberosity avulsion fracture following augmented repair, which was performed using the Krackow locking loop technique. We performed open reduction and intra-osseous fixation using a suture anchor. This procedure was done through the primary longitudinal incision for the calcaneal avulsion fracture fragment. After 6 months of follow-up, our patient has achieved a complete functional recovery and he can normally perform daily and work-related tasks without pain.

Review of Injection-Locked Oscillators

  • Choo, Min-Seong;Jeong, Deog-Kyoon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Handling precise timing in high-speed transceivers has always been a primary design target to achieve better performance. Many different approaches have been tried, and one of those is utilizing the beneficial nature of injection locking. Though the phenomenon was not intended for building integrated circuits at first, its coupling effect between neighboring oscillators has been utilized deliberately. Consequently, the dynamics of the injection-locked oscillator (ILO) have been explored, starting from R. Adler. As many aspects of the ILO were revealed, further studies followed to utilize the technique in practice, suggesting alternatives to the conventional frequency syntheses, which tend to be complicated and expensive. In this review, the historical analysis techniques from R. Adler are studied for better comprehension with proper notation of the variables, resulting in numerical results. In addition, how the timing jitter or phase noise in the ILO is attenuated from noise sources is presented in contrast to the clock generators based on the phase-locked loop (PLL). Although the ILO is very promising with higher cost effectiveness and better noise immunity than other schemes, unless correctly controlled or tuned, the promises above might not be realized. In order to present the favorable conditions, several strategies have been explored in diverse applications like frequency multiplication, data recovery, frequency division, clock distribution, etc. This paper reviews those research results for clock multiplication and data recovery in detail with their advantages and disadvantages they are referring to. Through this review, the readers will hopefully grasp the overall insight of the ILO, as well as its practical issues, in order to incorporate it on silicon successfully.