• Title/Summary/Keyword: load test

Search Result 8,113, Processing Time 0.035 seconds

A Study on the Mechanical Reliability of Large-area Bi-facial Glass-to-glass Photovoltaic Modules (대면적 양면 태양광 모듈의 기계적 신뢰성 연구)

  • Yohan, Noh;Jangwon, Yoo;Jaehyeong, Lee
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.111-115
    • /
    • 2022
  • For the high efficiency of the photovoltaic module, a high-output solar cell, which is the basis of photovoltaic power generation, is required. As the light receiving area of the solar cell increases, the light receiving area of the photovoltaic module also increases. Accordingly, recent trend is to use large-area solar cells such as M6 and M8 instead of M2-based solar cells for manufacturing the photovoltaic module and a study on the mechanical stiffness of the module with increased size is required. In this study, a mechanical load test corresponding to IEC-61215 was performed among the reliability tests of large-area photovoltaic modules. In order to confirm the degree to which the mechanical load test affects the photovoltaic module, the output and EL images were checked by sequentially increasing the pressure by 600 Pa at a pressure of 2400 Pa. Also, factors such as output and efficiency of large-area photovoltaic modules were verified through mechanical load testing of actual large-area photovoltaic modules and the rate of change was very small at 1%.

A Study of Fatigue Analysis for the Turntable Fixing Bolts Subjected to Mixed Load (혼합하중을 받는 선회대 고정볼트의 피로분석에 관한 연구)

  • Choi, Dong-Hoon;Lee, Do-Nam;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.1-6
    • /
    • 2022
  • In this study, to confirm the effects of the mixed load of normal and shear forces acting on a fixing bolt, fatigue design criteria were developed by varying the loading angle and conducting tensile and fatigue tests. After evaluating and comparing the test results under different loading angles, the evaluation criteria were selected. These evaluation criteria were then applied to develop the design criteria. An Arcan fixture was designed and manufactured to simultaneously apply a mixed load of normal and shear forces to the fixing bolt of a turntable, and a fatigue test was conducted. S-N diagrams for various loading angles were obtained, and a 1% P-S-N diagram of failure probability was determined using statistical processing techniques. Our results show that failures of the fixing bolt can be prevented using these diagrams as a basis for developing fatigue design criteria.

Wind load parameters and performance of an integral steel platform scaffold system

  • Zhenyu Yang;Qiang Xie;Yue Li;Chang He
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.263-275
    • /
    • 2023
  • As a new kind of construction facility for high rise buildings, the integral steel platform scaffold system (ISPS) consisting of the steel skeleton and suspended scaffold faces high wind during the construction procedure. The lattice structure type and existence of core tubes both make it difficult to estimate the wind load and calculate the wind-induced responses. In this study, an aeroelastic model with a geometry scale ratio of 1:25 based on the ISPS for Shanghai Tower, with the representative square profile, is manufactured and then tested in a wind tunnel. The first mode of the prototype ISPS is a torsional one with a frequency of only 0.68 Hz, and the model survives under extreme wind speed up to 50 m/s. The static wind load and wind vibration factors are derived based on the test result and supplementary finite element analysis, offering a reference for the following ISPS design. The spacer at the bottom of the suspended scaffold is suggested to be long enough to touch the core tube in the initial status to prevent the collision. Besides, aerodynamic wind loads and cross-wind loads are suggested to be included in the structural design of the ISPS.

Structural Performance Evaluation of System Scaffolding for Elevator Installation Work (엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가)

  • Jong Moon Hwang;Gi Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4030-4048
    • /
    • 2022
  • In this study, road transportation tests were conducted with surrogate fuel assemblies under normal conditions of transport to evaluate the vibration and shock load characteristics of spent nuclear fuel (SNF). The overall test data analysis was conducted based on the measured acceleration and strain data obtained from the speed bump, lane-change, deceleration, obstacle avoidance, and circular tests. Furthermore, representative shock response spectrums and power spectral densities of each test mode were acquired. Amplification or attenuation characteristics were investigated according to the load transfer path. The load attenuated significantly as it transferred from the trailer to the cask. By contrast, the load amplified as it transferred from the cask to the surrogate SNF assembly. The fuel loading location on the cask disk assembly did not exhibit a significant influence on the strain measured from the fuel rods. The principal strain was in the vertical direction, and relatively large strain values were obtained in spans with large spacing between spacer grids. The influence of the lateral location of fuel rods was also investigated. The fuel rods located at the side exhibited relatively large strain values than those located at the center. Based on the strain data obtained from the test results, a hypothetical road transportation scenario was established. A fatigue evaluation of the SNF rod was performed based on this scenario. The evaluation results indicate that no fatigue damage occurred on the fuel rods.

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino;Ruben A. Galindo
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.573-594
    • /
    • 2024
  • This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

An Experimental Study on the Load Carrying Capacity and Deformation Properties of Steel Fiber Reinforced Concrete Slab (강섬유보강 콘크리트 슬래브의 내력 및 변형특성에 관한 실험적 연구)

  • 박승범;조광연;신동기;장석호;김부일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.327-332
    • /
    • 1997
  • This study is aimed to investigate the effect of load and deflection on steel fiber reinforced concrete slab. Slabs were made with Hooked and Straight types steel fiber and compared a change of steel fiber contents and fiber types. Test were carried out to evaluate he first crack load, maximum load and deflection of slab. At the result, the first crack load, maximum load and energy absorption capacity were increased remarkably as steel fiber contents wee increased. And we found that the deflection of slab at same load ere decreased as steel fiber contents were increased, too. As the aspect ration was increased, the first crack load, maximum load and energy absorption capacity were increased.

  • PDF

Consolidation Characteristics of Chungju Dam Deposit Soil in the Load Increment Ratio (하중증가비에 따른 충주댐 퇴적지반의 압밀 특성)

  • 이준대;오세욱
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.123-126
    • /
    • 2000
  • This study shows consolidation properties resulted from the experiment made on changes by load increment ratio and consolidation duration of standard consolidation test using deposit soil of Chungju Dam. Though the comparison and analysis of the result turned out that void ratio by load increment ratio was unchanged greatly, the result was inclined as followes : the smaller load increment ratio is, the bigger void ratio is, while the bigger load increment ratio is the bigger settlement is. Also coefficient of consolidation is increased in inverse ratio to load increment ratio. Coefficient of permeability is increased in proportion to load increment ratio, it is not fixed changes by consolidation duration, however. Degree of consolidation is increased to load increment ratio.

  • PDF

An Improvement Algorithm of the Daily Peak Load Forecasting for Korean Thanksgiving Day and the Lunar New Year's Day (추석과 설날 연휴에 대한 전력수요예측 알고리즘 개선)

  • Ku, Bon-Suk;Baek, Young-Sik;Song , Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.453-459
    • /
    • 2002
  • This paper proposes an improved algorithm of the daily peak load forecasting for Korean Thanksgiving Day and the Lunar New Year's day. So far, many studies on the short-term load forecasting have been made to improve the accuracy of the load forecasting. However, the large errors of the load forecasting occur i case of Korean Thanksgiving Day and the Lunar New Year's Day. In order to reduce the errors of the load forecasting, the fuzzy linear regression method is introduced and a good selection method of the past load pattern is presented. Test results show that the proposed algorithm improves the accuracy of the load forecasting.