DOI QR코드

DOI QR Code

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino (ETSI Caminos, C. y P., Universidad Politecnica de Madrid) ;
  • Ruben A. Galindo (ETSI Caminos, C. y P., Universidad Politecnica de Madrid)
  • Received : 2023.11.03
  • Accepted : 2024.03.12
  • Published : 2024.05.25

Abstract

This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).

Keywords

Acknowledgement

The authors are grateful for the "Jose Entrecanales Ibarra" Foundation, for the donation of the necessary equipment to carry out this investigation. It is also necessary to thank the company RODIO of Spain, for financing this work and the UPM for the unconditional support it gives to the research.

References

  1. Agustawijaya, D.S. (2007), "The uniaxial compressive strength of soft rock", Civil Eng. Dimens., 9, 9-14. https://doi.org/10.9744/ced.9.1.pp.%209-14.
  2. ASTM D 1143/D 1143M-07 (2007), Standard Test Methods for Deep Foundations under Static Axial Compressive Load, ASTM International, West Conshohocken, PA, USA.
  3. ASTM D5731-16 (2016), Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications, ASTM International, West Conshohocken, PA, USA.
  4. Ayithi, A., Bullock, P.J., Khoo, H.S. and Ramana, G.V. (2013), "Technical and economic benefits of o-cell load testing for deep foundations in India", Proceedings of Indian Geotechnical Conference, Roorkee, India, December.
  5. Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Rock Mech., 6(4), 189-236. https://doi.org/10.1007/BF01239496.
  6. Basu, A. and Aydin, A. (2006), "Predicting uniaxial compressive strength by point load test: Significance of cone penetration", Rock Mech. Rock Eng., 39, 483-490. https://doi.org/10.1007/s00603-006-0082-y.
  7. Bieniawski, Z.T. (1973), "Engineering classification of jointed rock masses", Trans. South Afr. Inst. Civil Eng., 15, 335-344.
  8. Bieniawski, Z.T. (1974), "Estimating the strength of rock materials", J. South. Afr. Inst. Min. Metall., 74, 312-320. https://doi.org/10.1016/0148-9062(74)91782-3.
  9. Bieniawski, Z.T. (1975), "Point load test in geotechnical practice", Eng. Geol., 9, 1-11. https://doi.org/10.1016/0013-7952(75)90024-1.
  10. Bieniawski, Z.T. (1976), "Rock mass classifications in rock engineering", Exploration for Rock Engineering: Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg, South Africa, November.
  11. Bieniawski, Z.T. (1979), "The geomechanics classification in rock engineering application", 4th ISRM Congress, Montreux, Switzerland, September.
  12. Bieniawski, Z.T. (1989), Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering, Wiley, New York, NY, USA.
  13. Broch, E. and Franklin, J.A. (1972), "The point-load strength test", Int. J. Rock Mech. Min. Sci., 9, 669-697. https://doi.org/10.1016/0148-9062(72)90030-7.
  14. Brok, N. (1985), "The equivalent core diameter method of size and shape correction in point load testing", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 22, 61-70. https://doi.org/10.1016/0148-9062(85)92328-9.
  15. Brook, N. (1977), "The use of irregular specimens for rock strength test", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 14, 193-202. https://doi.org/10.1016/0148-9062(77)90948-2.
  16. Brook, N. (1980), "Size correction for point load testing" Int. J. Rock Mech. Min. Sci. Geomech., 17, 231-235. https://doi.org/10.1016/0148-9062(80)91090-6.
  17. Carrubba, P. (1977), "Skin friction of large diameter piles socketed into rock", Can. Geotech. J., 34, 230-240. https://doi.org/10.1139/t96-104.
  18. Chang, C., Zoback, M.D. and Khaksar, A. (2006), "Empirical relations between rock strength and physical properties in sedimentary rock", J. Pet. Sci. Eng., 51(3-4), 223-237. https://doi.org/10.1016/j.petrol.2006.01.003.
  19. Codigo Tecnico de la Edificacion - CTE (2002), Ministerio de Fomento, Espana.
  20. Cummings, R.A., Kendorski, F.S. and Bieniawski, Z.T. (1982), "Caving rock mass classification and support estimation", U.S. Bureau of Mines Contract Report #J0100103; Engineers International, Chicago, IL, USA.
  21. D'Andrea, D.V., Fischer, R.L. and Fogelson D.E. (1964), "Prediction of compressive strength from other rock properties", US Department of the Interior, Bureau of Mines, Washington, D.C., USA.
  22. Deere, D.U. (1963), "Technical description of rock cores for engineering purposes", Rock Mech. Eng. Geol., 1(1), 16-22.
  23. Deere, D.U. and Deere, D.W. (1988), "The rock quality designation (RQD) index in practice", STP984-EB Rock Classification Systems for Engineering Purposes, ASTM International, West Conshohocken, PA, USA.
  24. Deere, D.U., Hendron, A.J., Patton, F.D. and Cording, E.J. (1966), "Design of surface and near-surface construction in rock", ARMA US Rock Mechanics/Geomechanics Symposium, Minneapolis, MN, September.
  25. Deere, D.U., Peck, R.B., Parker, H.W., Monsees, J.E. and Schmidt, B. (1970), "Design of tunnel support systems", 49th Annual Meeting of the Highway Research Board, Washington, D.C., USA, January.
  26. Duncan, C.W. and Christopher, W.M. (2004), Rock Slope Engineering, 4th Edition, Taylor and Francis, Oxfordshire, UK.
  27. Duncan. C.W. (1991), Foundation on Rock, CRC Press, Boca Raton, FL, USA.
  28. England, M. and Fleming, W.G.K. (1994), "Review of foundation testing methods and procedures", Proc. Inst. Civil Eng. Geotech. Eng., 107(3), 132-142. https://doi.org/10.1680/igeng.1994.26466.
  29. Fleming, W.G.K. (1992), "A new method for single pile settlement prediction and analysis", Geotech., 42, 411-425. https://doi.org/10.1680/geot.1992.42.3.411.
  30. Freyburg, D. (1972), "Der untere und mittlere buntsandstein swthuringen in seinen gesteinstechnicschen eigenschaften", Ber. Dte. Ges. Geol. Wiss., 17(6), 911-919.
  31. Fugro Loadtest (2023), www.loadtest.com/services/ocell.htm 
  32. Golubev, A.A. and Rabinovich, G.Y. (1976), "Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych", Prikl. Geofiz. Moskva, 73, 109-116.
  33. Google Earth, https://earth.google.com/web/@43.3159395,-1.9786363,-1.76891754a,3783.04591329d,35y,0h,0t,0r/data=OgMKATA
  34. Guia de Cimentaciones de Obras en Carretera - GCOC (2003), Ministerio de Fomento, Espana.
  35. Hassani, F.P., Scoble, M.J. and Whittaker, B.N. (1980), "Application of the point load index test to strength determination of rock and proposals for a new size-correction chart", Proceedings of the 21st US Symposium on Rock Mechanics, Rolla, MO, USA, May.
  36. Hikita, S. and Kikuchi, M. (1988), "A consideration on the utility of the point load test", Month. Newslett. Civil Eng. Inst., 423, 30-41.
  37. Hooley, P. and Lefroy, S.R. (1993), "The ultimate shaft frictional resistance mobilised by bored piles in over-consolidated clays and socketed into weak and weathered rock", Eng. Geol. Spec. Publ., 8, 447-455.
  38. Horsrud, P. (2001), "Estimating mechanical properties of shale from empirical correlations", SPE Drill. Complet., 16(2), 68-73. https://doi.org/10.2118/56017-PA
  39. Horvath, R.G., Kenney, T.C. and Kozicki, P. (1983), "Methods of improving the performance of drilled piers in weak rock", Can. Geotech. J., 20, 758-772. https://doi.org/10.1139/t83-081.
  40. Institution of Civil Engineers (2007), Specification for Piling and Embedded Retaining Walls, 2nd Edition, Thomas Telford Ltd, London, UK.
  41. Kahraman, S. (2001), "Evaluation of simple methods for assessing the uniaxial compressive strength of rock", Int. J. Rock Mech. Min. Sci., 38, 981-994. https://doi.org/10.1016/0148-9062(85)92328-9.
  42. Kendorsky, F.S., Cummings, R.A., Bieniawski, Z.T. and Skinner, E.H. (1983), "Rock Mass Classification for block caving mine drift support", 5th ISRM Congress, Melbourne, Australia, April.
  43. Kohno, M. and Maeda, H. (2012), "Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks", Int. J. Rock Mech. Min. Sci., 50, 147-157. https://doi.org/10.1016/j.ijrmms.2012.01.011.
  44. Kulhawy, F.H. and Phoon. K. (1993), "Drilled shaft side resistance in clay soil to rock", Design and Performance of Deep Foundations: Piles and Piers in Soil and Soft Rock, Dallas, Texas, USA, October.
  45. Kumar, D., Yonan, J. and Ruban, A.F. (2014), "Osterberg cell pile load test in Calgary, Alberta - A case study", GeoRegina 2014, Regina, Saskatchewan, Canada, September.
  46. Lal, M. (1999), "Shale stability: Drilling fluid interaction and shale strength", SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, April.
  47. Laubscher, D.H. (1977), "Geomechanics classification of jointed rock masses: Mining applications", Trans. Inst. Min. Metall., 86, A1-A7.
  48. Laubscher, D.H. (1984), "Design aspects and effectiveness of support systems in different mining conditions", Trans. Inst. Min. Metall., 93, A70-A81.
  49. Lauffer, H. (1958), "Gebirgsklassifizierung fur den stollenbau", Geol. Bauwesen, 74, 46-51.
  50. Mapa Geologico de Espana (2023), Scale 1:50.000 (2a Serie), Map 64:24-5, IGME, Madrid, Spain. https://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?language=es&id=64
  51. Marinos, P. and Hoek, E. (2000), "GSI: A geologically friendly tool for rock mass strength estimation", ISRM International Symposium, Melbourne, Australia, November.
  52. Marinos, P. and Hoek, E. (2001), "Estimating the geotechnical properties of heterogeneous rock masses such as Flysch", Bull. Eng. Geol. Environ., 60(2), 85-92. https://doi.org/10.1007/s100640000090.
  53. McNally, G.H.N. (1987), "Estimation of coal measures rock strength using sonic and neutron logs", Geoexpl., 24, 381-395. https://doi.org/10.1016/0016-7142(87)90008-1.
  54. Militzer, H. and Stoll, R. (1973), "Einige beitraegeder geophysik zur primaerdatenerfassung im bergbau", Neue Bergbautechnik, 3(1), 21-25.
  55. Osterberg, J.O. (1984), "A new simplified method for load testing drilled shafts", ADSC, 1984, 9.
  56. Osterberg, J.O. (1989a), "New device for load testing driven piles and drilled shafts separates friction and end bearing", Proceedings International Conference on Piling and Deep Foundations, London, UK, May.
  57. Osterberg, J.O. (1989b), "New load cell testing device", Proceedings of 14th Annual Conference Deep Foundations Institute, Baltimore, MD, October.
  58. Osterberg, J.O. (1989c), "Breakthrough in load testing methodology", Found. Drill., 28(8), 13-18.
  59. Osterberg, J.O. (1992), "Rock socket friction in drilled shafts: It's greater than you think", Found. Drill., 1992, 15-21.
  60. Osterberg, J.O. (1994a), "Capacity of drilled shafts in hard rock", 25th Annual Southeastern Transportation Geotechnical Engineering Conference, Natchez, MS, USA, October.
  61. Osterberg, J.O. (1994b), "Recent advances in load testing driven piles and drilled shafts using the osterberg load cell method", Proceedings of the Geotechnical Lecture Series, Geotechnical Division, Illinois Section, American Society of Civil Engineeers, Chicago, IL, USA.
  62. Osterberg, J.O. (1995), "The Osterberg cell for load testing drilled shafts and driven piles", FHWA-SA-94-035; U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., USA.
  63. Osterberg, J.O. (1998), "The Osterberg load test method for bored and driven piles - the first ten years", 7th International Conference & Exhibition on Piling and Deep Foundations, Vienna, Austria, June.
  64. Osterberg, J.O. (1999a), "Value engineering - A great concept why isn't it used more frequently?", The Ohio River Valley Soils Seminar (ORVSS XXX), Cincinnati, OH, USA, October.
  65. Osterberg, J.O. (1999b), "What has been learned about drilled shafts from the Osterberg cell", Deep Foundations Institute Annual Meeting, Dearborn, MI, October.
  66. Pacher, F., Rabcewicz, L. and Golser, J. (1974), "Zum derzeitigen stand der gebirgsklassifizierung im stollen- und tunnelbau", Strassenforschung, Ministry of Building and Technology, Vienna, Austria.
  67. Palmstrom, A. (1982), "The volumetric joint count - A useful and simple measure of the degree of rock mass jointing", International Association of Engineering Geology, International Congress, New Delhi, India.
  68. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley & Sons, New York, NY, USA.
  69. Recomendaciones Geotecnicas para el Proyecto de Obras Maritimas y Portuarias - ROM 0.5-94 (1994), Ministerio de Fomento, Espana.
  70. Recomendaciones Geotecnicas para Obras Maritimas y Portuarias - ROM 0.5-05 (2005), Ministerio de Fomento, Espana.
  71. Rocscience Inc. (2023), www.rocscience.com
  72. Rosenberg, P. and Journeaux, N.L. (1976), "Friction and end bearing tests on bedrock for high capacity socket design", Can. Geotech. J., 13, 324-333. https://doi.org/10.1139/t76-033
  73. Rowe, R.K. and Armitage, H.H. (1987), "A design method for drilled piers in soft rock", Can. Geotech. J., 24, 126-142. https://doi.org/10.1139/t87-011
  74. Schmertmann, J.H. (1993), "The Bottom-up, Osterberg method for static testing of shafts and piles", Progress in Geotechnical Engineering Practice, 13th Central Pennsylvania Geotechnical Seminar, Central PA ASCE & PennDOT, Hershey, PA, USA, April.
  75. Schmertmann, J.H. and Hayes, J.A. (1997), "Observations from Osterberg cell tests of bored piles", The Newslett. Deep Found. Inst., 1997, 11-14.
  76. Schmertmann, J.H. and Hayes, J.A. (1997), "The Osterberg cell and bored pile testing - A symbiosis", 3rd International Geotechnical Engineering Conference, Cairo, Egypt, January.
  77. Schmertmann, J.H., Hayes, J.A., Molnit, T. and Osterberg, J. (1998), "O-cell testing case histories demonstrate the importance of bored pile (Drilled shaft) construction technique", Fourth International Conference on Case Histories in Geotehnical Engineering, St. Louis, MO, USA, March.
  78. Seo, H., Moghaddam, R.B. and Lawson, W.D. (2016), "Assessment of methods for construction of an equivalent top loading curve from O-cell test data", Soils Found., 56(5), 889-903. https://doi.org/10.1016/j.sandf.2016.08.013.
  79. Serrano, A. and Olalla, C. (2006), "Shaft resistance of piles in rock: Comparison between in situ test data and theory using the Hoek and Brown failure criterion", Int. J. Rock Mech. Min. Sci., 43(5), 826-830. https://doi.org/10.1016/j.ijrmms.2005.11.008.
  80. Serrano, A., Olalla, C. and Galindo, R. (2015), "Shaft resistance of a pile in rock based on the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 76, 138-145. https://doi.org/10.1016/j.ijrmms.2015.03.007.
  81. Terzaghi, K. (1946), "Rock defects and loads on tunnel supports", Rock Engineering with Steel Support, Commercial Shearing Co., Youngstown, OH, USA.
  82. Thorne, C.P. (1977), "The allowable loadings of foundations on shale and sandstone in the Sydney region, Part 3. Field test results", Sydney Group of Australian Geomechanics Society, Institution of Engineers, Sydney, Australia.
  83. Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rock", Eng. Geol., 72, 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.
  84. Ulusay, R. and Hudson, J.A. (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, Springer International Publishing, Cham, Switzerland.
  85. UNE 22950-5 (1996), Propiedades Mecanicas de las Rocas. Ensayos para la Determinacion de la Resistencia, Parte 5: Resistencia a Carga Puntual, Asociacion Espanola de Normalizacion, Madrid, Spain.
  86. Wickham, G.E., Tiedemann, H.R. and Skinner, E.H. (1972), "Support determinations based on geologic predictions", North American Rapid Excavation and Tunneling Conference, Chicago, IL, June.
  87. Williams, A.F. and Pells, P.J.N. (1980), "Side resistance rock sockets in sandstonde, mudstone and shale", Can. Geotech. J., 18, 502-513. https://doi.org/10.1139/t81-061.
  88. Williams, A.F., Johnston, I.W. and Donald, I.B. (1980), "The design of socketed piles in weak rock", Golden Jubilee of the International Society for Soil Mechanics and Foundation Engineering: Commemorative Volume, Institution of Engineers, Barton, Australia.
  89. Zhang, L. and Einstein, H. (1998), "End bearing capacity of drilled shafts in rock", J. Geotech. Geoenviron. Eng., 124(7), 574-584. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(574).
  90. Zhussupbekov, A.Z., Omarov, A.R. and Zhukenova, G.A. (2016), "The experience in applying of static load and O-cell pile testing geotechnologies in problematical soil conditions of Astana", International Mini Symposium CHUBU (IMSCHUBU), Nagoya, Japan, May.