• Title/Summary/Keyword: little Bloch space

Search Result 7, Processing Time 0.023 seconds

HARMONIC LITTLE BLOCH FUNCTIONS ON THE UPPER HALF-SPACE

  • Yi, HeungSu
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 1997
  • On the setting of the upper half-space of the euclidean n-space, we study some properties of harmonic little Bloch functions and we show that for a given harmonic little Bloch function $u$, there exists unique harmonic conjugates of $u$, which are also little Bloch functions with appropriate norm bounds.

  • PDF

BLOCH-TYPE SPACE RELATED WITH NORMAL FUNCTION

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.533-541
    • /
    • 2011
  • Let ${\omega}$ be a normal function. In this paper, we will extend the concept of Bloch space to Bloch-type space related with normal function ${\omega}$. We will investigate the properties of Bloch-type space ${\mathcal{B}}_{\omega}$ and the little Bloch-type space ${\mathcal{B}}_{{\omega},0}$ with weight ${\omega}$.

A WEIGHTED COMPOSITION OPERATOR ON THE LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.527-540
    • /
    • 2010
  • We characterize the boundedness and compactness of the weighted composition operator on the logarithmic Bloch space $\mathcal{L}\ss=\{f{\in}H(D):sup_D(1-|z|^2)ln(\frac{2}{1-|z|})|f'(z)|$<+$\infty$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$. The results generalize the known corresponding results on the composition operator and the pointwise multiplier on the logarithmic Bloch space ${\mathcal{L}\ss$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$.

WEIGHTED BLOCH SPACES IN $C^n$

  • Kyong Taik Hahn;Ki Seong Choi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.177-189
    • /
    • 1998
  • In this paper, weighted Bloch spaces $B_q (q > 0)$ are considered on the open unit ball in $C^n$. These spaces extend the notion of Bloch spaces to wider classes of holomorphic functions. It is proved that the functions in a weighted Bloch space admit certain integral representation. This representation formula is then used to determine the degree of growth of the functions in the space $B_q$. It is also proved that weighted Bloch space is a Banach space for each weight q > 0, and the little Bloch space $B_q,0$ associated with $B_q$ is a separable subspace of $B_q$ which is the closure of the polynomials for each $q \geq 1$.

  • PDF

COMPACT INTERTWINING RELATIONS FOR COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES AND THE WEIGHTED BLOCH SPACES

  • Tong, Ce-Zhong;Zhou, Ze-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.125-135
    • /
    • 2014
  • We study the compact intertwining relations for composition operators, whose intertwining operators are Volterra type operators from the weighted Bergman spaces to the weighted Bloch spaces in the unit disk. As consequences, we find a new connection between the weighted Bergman spaces and little weighted Bloch spaces through this relations.

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).