Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.1.125

COMPACT INTERTWINING RELATIONS FOR COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES AND THE WEIGHTED BLOCH SPACES  

Tong, Ce-Zhong (Department of Mathematics Hebei University of Technology)
Zhou, Ze-Hua (Department of Mathematics Tianjin University)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.1, 2014 , pp. 125-135 More about this Journal
Abstract
We study the compact intertwining relations for composition operators, whose intertwining operators are Volterra type operators from the weighted Bergman spaces to the weighted Bloch spaces in the unit disk. As consequences, we find a new connection between the weighted Bergman spaces and little weighted Bloch spaces through this relations.
Keywords
composition operator; integral-type operator; Bloch space; Bergman space; intertwining relation; essential commutativity; universal set;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Aleman and J. A. Cima, An integral operator on Hp and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176.   DOI
2 A. Aleman and A. G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337-356.
3 P. S. Bourdon and J. H. Shapiro, Intertwining relations and extended eigenvalues for analytic Toeplitz operators, Illinois J. Math. 52 (2008), no. 3, 1007-1030.
4 C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
5 V. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Prilozen 7 (1973), no. 3, 55-56.
6 S. X. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc. 45 (2008), no. 1, 229-248.   과학기술학회마을   DOI   ScienceOn
7 J. H. Shapiro, Composition Operators and Classical Function Theory, Springer Verlag, New York, 1993.
8 A. G. Siskakis and R. H. Zhao, A Volterra type operator on spaces of analytic functions, Function spaces (Edwardsville, IL, 1998). Contemp. Math., Vol. 232, pp. 299-311, 1999.   DOI
9 C. Tong and Z. Zhou, Intertwining relations for Volterra operators on the Bergman space, Illinois J. Math., to appear.
10 J. Xiao, The $Q_p$ carelson measure problem, Adv. Math. 217 (2008), no. 5, 2075-2088.   DOI   ScienceOn
11 K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), no. 3, 1143-1177.   DOI
12 K. H. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math, Springer, 2005.