• Title/Summary/Keyword: liquid phase precursor method

Search Result 44, Processing Time 0.027 seconds

The synthesis of high purity micro Ag particle using the rapid firing -liquid phase precursor method (RF-LPP법을 이용한 고순도 마이크로 Ag 입자 합성)

  • Lim, Byeong-Seok;Song, Young-Hyun;Lee, Min-Ji;Mang, Sung-Ryul;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.93-97
    • /
    • 2015
  • To synthesis of high purity micro silver particle, we extracted the silver from the waste by liquid-liquid extraction and used the rapid firing-liquid phase precursor (RF-LPP) method. The silver micro particle was synthesized at $500^{\circ}C$ for 3 hr in air atmosphere by RF-LPP method. As a result of the research, micro silver particle is measured X-ray diffraction (XRD), the main peak is nearly corresponded to the same as JCPDS card (No.87-0719). With using the RF-LPP method, the fine Ag micro particle indicated due to the control of nucleation site and the oxygen contents was decreased by reducing treatment. We expect this research contribute to advance in field of the recycling technology.

High Luminescence Properties of YPV nano size phosphors by a Liquid Phase Precursor Method

  • Jo, D.S.;Dulda, A.;Masaki, T.;Yoon, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1293-1296
    • /
    • 2009
  • The synthesis of nano-size ($Y_{0.955}Eu_{0.1}$)($P_{0.7}V_{0.45}$)$O_4$ red phosphors were conducted by using a Liquid Phase Precursor (LPP) method. In this method, cellulose pulp was used as a template showing the micro fibre structures to obtain the nano size YPV red phosphor. Aqueous solutions of raw materials were impregnated into cellulose pulp and subsequently impregnated pulp was dried and fired at $800-1200^{\circ}C$ for 1h. The effect of luminescence properties on compositions and temperatures was evaluated with photoluminescence spectrum, X-ray diffraction and FE-SEM, and TEM. High efficiency (~110%) of phosphor of size of ~500nm fired at $1150^{\circ}C$ was obtained compared with the micro size of commercial product. High efficiency behaviors of nano size phosphors were discussed in this paper.

  • PDF

Synthesis and Characterization of Bi2Sr2Ca2Cu3Ox Powders by Ultrasonic Spray Pyrolysis Method (Ultrasonic Spray Pyrolysis 법에 의한 Bi2Sr2Ca2Cu3Ox 분말합성 및 특성평가)

  • Bae, Bung-Su;Jung, Sang-Jin;Lee, Bong;Moon, Chang-Kwun;Choi, Hee-Lack
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.86-91
    • /
    • 2010
  • Superconductor material $Bi_2Sr_2Ca_2Cu_3O_x$(Bi-2223) powders were synthesized by ultrasonic spray pyrolysis method. It is clear that Bi-2223 phase more than Bi-2212 phase was acquired at sufficient synthesized time. Best condition for Bi-2223 phase was synthesizing temperature at $860^{\circ}C$. We also investigated the effects for concentrations and viscosities of starting liquid precursor as well as temperature distribution of reacting furnace. The size of synthesized powder was decreased by decreasing the concentration of starting liquid precursor. Modified reacting furnace with four different temperature heating zones gave us successful results for desirable nano-powder including $Bi_2Sr_2Ca_2Cu_3O_x$ phase. Citric acid addition to starting liquid precursor showed increasing of the size for synthesized powder. Bi-2223 single phase was acquired from Bi2223 and Bi-2212 mixed phases through heat treatment in box furnace at 24 hours.

Rapid Fabrication of Bi2212 Superconducting Films on Cu Tape with Cu-free Precursor (Cu-free 전구체를 이용한 동 테이프 위의 Bi2212 초전도 후막의 급속 제조)

  • 한상철;성태현;한영희;이준성;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.69-72
    • /
    • 1999
  • A Well oriented Bi$_2$re$_2$CaCu$_2$O$\sub$8/(Bi2212) superconductor thick films were formed successfully on a copper substrate by liquid reaction between a Cu-free precursor and Cu tape using method in which Cu-free BSCO powder mixture was printed on copper plate and heat-treated. And we examined the mechanism for the rapid formation of Bi2212 superconducting films from observing the surface microstructure with heat-treatment time. At heat-treatment temperature, the printing layer partially melt by reacting with CuO of the oxidizing copper plate, and the nonsuperconducting phases present in the melt are typically Bi-free phases and Cu-free phases. Following the partial melting, the Bi$_2$Sr$_2$CaCu$_2$O$\sub$8/ superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. It was confirmed that the phase colony from the phase diagram of Bi$_2$O$_3$-(SrO+CaO)/2-CuO system is similar to the observed result.

  • PDF

Synthesis of Nickel Oxide (NiO) nanoparticles using nickel(II) nitrate hexahydrate as a precursor (Nickel(II) nitrate hexahydrate를 전구체로 사용한 산화니켈(NiO) 나노입자의 합성)

  • Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 2023
  • Nickel oxide (NiO) nanoparticles were successfully synthesized by a simple liquid phase process for producing ceramics powder using a precursor impregnated with a nickel(II) nitrate hexahydrate aqueous solution in an industrial pulp. The microfibrile structure of the precursor impregnated with nickel nitrate hexahydrate aqueous solution was confirmed by scanning electron microscope (SEM), and the crystal structure and particle size of nickel oxide (NiO) particles produced as the heat treatment temperature of the precursor were analyzed by X-ray diffraction (XRD) and SEM. As a result, it was confirmed through XRD and SEM analysis that the temperature at which the organic material of the precursor is completely thermally decomposed was 495-500℃, and the size and crystallinity of the nickel oxide particles produced increased as the heat treatment temperature increased. The size of the nickel oxide particles obtained by heat treatment at 500-800℃ for 1 hour was 50-200 nm. It was confirmed by XRD and SEM analysis that a NiO crystal phase was formed at a heat treatment temperature of 380℃, only a single NiO phase existed until 800℃.

Synthesis of CuO nanoparticles by liquid phase precursor process (액상프리커서법에 의한 산화구리(CuO) 나노 입자의 합성)

  • Seong-Whan Shinn
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.855-859
    • /
    • 2023
  • Copper oxide (CuO) nanoparticles were successfully synthesized using a precursor in which industrial starch was impregnated with an aqueous solution of copper (II) nitrate trihydrate. The microstructure of the precursor impregnated with an aqueous solution of copper nitrate trihydrate was confirmed with a scanning electron microscope (SEM), and the particle size and the crystal structure of the copper oxide particles produced as the temperature of the heat treatment of the precursor increased was analyzed by X-ray diffraction (XRD) and the scanning electron microscope (SEM). As a result of the analysis, it was confirmed that the temperature at which the organic matter of the precursor is completely thermally decomposed is 450-490℃, and that the size and crystallinity of the copper oxide particles increased as the heat treatment temperature increased. The size of the copper oxide particles obtained through heat treatment at 500-800℃ during 1 hour was 100nm~2㎛. It was confirmed that the copper oxide crystalline phase is formed at a heat treatment temperature of 400℃, and only the copper oxide single phase existed up to 800℃. And it was also confirmed that the size of particles produced increased as the calcination temperature increased.

Synthesis of Nano-sized Tungsten Carbide - Cobalt Powder by Liquid Phase Method of Tungstate (텅스텐염의 액상법을 통한 초미립 WC-Co 분말의 합성)

  • Kim, Jong-Hoon;Park, Yong-Ho;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.332-339
    • /
    • 2011
  • Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.

Synthesis of BiSrCaCu(Ni)O Ceramics from the Gel Precursors and the Effect of Ni Substitution

  • Ahn, Beom-Shu
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1304-1323
    • /
    • 2002
  • Superconducting BiSrCaCu(Ni)O ceramicss have been prepared by the gel method using an aqueous solution containing a tartaric acid. The aqueous solution of metal salts was concentrated without precipitation. The precursor so prepared was homogeneou s and calcined at $825^{\circ}C$ for 24 h to produce superconducting phase. The thermal decomposition of gels, the formation of superconducting phase, and their ceramic microstructure were studied using IR, TGA, XRD, resistance measurements, and SEM. This method is highly reproducible and leads to powders with excellent homogeneity and small particle size for easy sinterability. The nickel dopant substituting for Cu gives rise to the gradual decrease of the Tc. Phase pure 2212 ceramics were obtained at 825 $^{\circ}C$ for 24 h. SEM pictures showed that liquid phase was formed when the samples were sintered temperatures higher than 825 $^{\circ}C$.

Determination of Glimepiride in Human Plasma by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry

  • Kim, Ho-Hyun;Chang, Kyu-Young;Lee, Hee-Joo;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.109-114
    • /
    • 2004
  • A sensitive method for quantitation of glimepiride in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS). Glipizide was used as an internal standard. Glimepiride and internal standard in plasma sample was extracted using diethyl etherethyl acetate (1 : 1). A centrifuged upper layer was then evaporated and reconstituted with the mobile phase of acetonitrile-5 mM ammonium acetate (60:40, pH 3.0). The reconstituted samples were injected into a $C_{18}$ reversed-phase column. Using MS/MS in the multiple reaction monitoring (MRM) mode, glimepiride and glipizide were detected without severe interference from human plasma matrix. Glimepiride produced a protonated precursor ion ([M+H]$^+$) at m/z 491 and a corresponding product ion at m/z 352. And the internal standard produced a protonated precursor ion ([M+H]]$^+$) at m/z 446 and a corresponding product ion at m/z 321. Detection of glimepiride in human plasma by the LC-ESI/MS/MS method was accurate and precise with a quantitation limit of 0.1 ng/mL. The validation, reproducibility, stability, and recovery of the method were evaluated. The method has been successfully applied to pharmacokinetic studies of glimepiride in human plasma.

Recent developments in liquid-phase synthesis and applications of nanomagnesia

  • Hanie Abdollahzade;Asghar Zamani
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.103-115
    • /
    • 2023
  • Recent developments in the synthesis of nanomagnesia of controlled sizes and shapes that are suitable for various applications are reviewed. Two main methods, based on liquid-phase synthesis, i.e., chemical methods and bio-based methods, are used to synthesize nanomagnesia. Conventionally, nanomagnesia was synthesized by chemical methods such as coprecipitation, sol-gel, combustion method, and so on using different chemical agents and stabilizers which later on become responsible for several biological risks because of the toxicity of used chemicals. Bio-based protocols are growing as another environmental friend method for the synthesis of various nanostructures especially nanomagnesia using biomass, plant extracts, alga, and fungi as a source of precursor material. The ideal method should offer better control of textural properties of nanostructures and decrease the necessity for purification of the synthesized nanoproducts, which sequentially removes the use of large amounts of chemicals and organic solvents and manipulation of products that are unsafe to the environment. Finally, the broad applicability of nanomagnesia in diverse areas is presented. Employment of nanomagnesia reported in several laboratory and industrial fields are valued from the standpoint of the significance of these issues for technological requests, as described in the literature. Nanomagnesia has various applications such as antimicrobial performance, removing pollutants, batteries application, and catalysis.