DOI QR코드

DOI QR Code

Synthesis of Nickel Oxide (NiO) nanoparticles using nickel(II) nitrate hexahydrate as a precursor

Nickel(II) nitrate hexahydrate를 전구체로 사용한 산화니켈(NiO) 나노입자의 합성

  • Soo-Jong Kim (Dept. of Advanced Materials & Chemical Engineering, Halla University)
  • 김수종 (한라대학교 신소재화학공학과 )
  • Received : 2023.05.01
  • Accepted : 2023.05.15
  • Published : 2023.05.31

Abstract

Nickel oxide (NiO) nanoparticles were successfully synthesized by a simple liquid phase process for producing ceramics powder using a precursor impregnated with a nickel(II) nitrate hexahydrate aqueous solution in an industrial pulp. The microfibrile structure of the precursor impregnated with nickel nitrate hexahydrate aqueous solution was confirmed by scanning electron microscope (SEM), and the crystal structure and particle size of nickel oxide (NiO) particles produced as the heat treatment temperature of the precursor were analyzed by X-ray diffraction (XRD) and SEM. As a result, it was confirmed through XRD and SEM analysis that the temperature at which the organic material of the precursor is completely thermally decomposed was 495-500℃, and the size and crystallinity of the nickel oxide particles produced increased as the heat treatment temperature increased. The size of the nickel oxide particles obtained by heat treatment at 500-800℃ for 1 hour was 50-200 nm. It was confirmed by XRD and SEM analysis that a NiO crystal phase was formed at a heat treatment temperature of 380℃, only a single NiO phase existed until 800℃.

질산니켈육수화물염(nickel(II) nitrate hexahydrate) 수용액을 공업용 펄프에 함침시킨 전구체를 이용하여 세라믹스 분말을 제조하는 간단한 액상 합성법으로 산화니켈(NiO) 나노입자를 성공적으로 합성하였다. 질산니켈육수화물염 수용액이 함침된 전구체의 미세구조를 주사전자현미경(SEM)으로 확인하였고, 전구체의 열처리온도 증가에 따라 생성되는 산화니켈(NiO) 입자의 결정구조 및 입자크기를 X선회절분석(XRD) 및 SEM으로 분석하였다. 그 결과 전구체의 유기물질이 완전하게 열분해 되는 온도는 495-500℃이며, 열처리 온도의 증가에 따라 생성되는 산화니켈 입자의 크기 및 결정성이 증가하는 것을 XRD, SEM 분석을 통하여 확인하였다. 500-800℃에서 각각 1시간 동안 열처리하여 얻어진 산화니켈 입자의 크기는 50-200nm였다. 열처리 온도 380℃에서 NiO 결정상이 형성되고, 800℃까지는 NiO 단일상만 존재하며, 열처리 온도가 높아짐에 따라 생성되는 입자의 크기가 커지고 있음을 XRD 및 SEM 분석으로 확인하였다.

Keywords

References

  1. A. M. Negrescu, M. S. Killian, S. N. V. Raghu, P. Schmuki , A. Mazare, and A. Cimpean, "Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects," Journal of Functional Biomaterials(JFB), Vol. 13, No. 4, pp. 274(1-47), December 2022.https://doi.org/10.3390/jfb13040274
  2. G. Oskam, "Metal oxide nanoparticles: synthesis, characterization and application," Journal of Sol-Gel Science and Technology(JSST), Vol. 37, No. 3, pp. 161-164, March 2006. DOI:10.1007/s10971-005-6621-2
  3. T. Tsuzuki, "Mechanochemical synthesis of metal oxide nanoparticles," Communications Chemistry, Vol. 4, No. 143, pp. 1-11, 2021.https://doi.org/10.1038/s42004-021-00582-3
  4. M. El-Kemary, N. Nagy, I. El-Mehasseb, "Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose," Materials Science in Semiconductor Processing, Vol. 16, No. 6, pp. 1747-1752, December 2013. https://doi.org/10.1016/j.mssp.2013.05.018
  5. S. Chatterjee, R. Maiti, M. Miah, S. K. Saha, and D. Chakravorty, "NiO Nanoparticle Synthesis Using a Triblock Copolymer: Enhanced Magnetization and High Specific Capacitance of Electrodes Prepared from the Powder," American Chemical Society Omega(ACS Omega), VOl. 2, pp. 283-289, January, 2017. DOI:10.1021/acsomega.6b00384
  6. N. N. M. Zorkipli, N. H. M. Kaus, and A. A. Mohamad, "Synthesis of NiO Nanoparticles through Sol-gel Method," Procedia Chemistry Vol. 19, pp. 626-631, March, 2016. doi:10.1016/j.proche.2016.03.062
  7. I. Manna and M. Bandyopadhyay, "Engineered Nickel Oxide Nanoparticle Causes Substantial Physicochemical Perturbation in Plants," Frontiers Chemistry(FCHEM), Vol. 6, Article No. 92, pp. 1-14, November 2017. doi: 10.3389/fchem.2017.00092
  8. S. Pereira, A. Goncalves, N. Correia, J. Pinto, L. Pereira, R. Martins, and E. Fortunato, "Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature," Solar Energy Materials and Solar Cells, Vol. 120, Part A, pp. 109-115, January 2014. https://doi.org/10.1016/j.solmat.2013.08.024
  9. H. Sato, T. Minami, S. Takata, and T. Yamada, "Transparent conducting p-type NiO thin films prepared by magnetron sputtering," Thin Solid Films, Vol. 236, No. 1-2, p . 27-31, December, 1993. https://doi.org/10.1016/0040-6090(93)90636-4
  10. M. M. Gomaa, M. H. Sayed, V. L. Patil, M. Boshta, P. S. Patil, "Gas sensing performance of sprayed NiO thin films toward NO2 gas," Journal of Alloys and Compounds, Vol. 885, 160908, June, 2021. https://doi.org/10.1016/j.jallcom.2021.160908
  11. M. Ghosh, K. Biswas, A. Sundaresana, and C. N. R. Rao, "MnO and NiO nanoparticles: Synthesis and magnetic properties," Journal of Materials Chemistry, Vol. 16, pp. 106-111, December, 2006. DOI: 10.1039/B511920K
  12. D.-K. Ban, W.-H. Park, S. W. Eun, and J. Kim, "NiO-transparent Metal-oxide Semiconductor Photoelectric Devices," Journal of the Korean Institute of Electrical and Electronic Material Engineers(KIEEME), Vol. 29, No. 6, pp. 359-364, June, 2016. DOI: http://dx.doi.org/10.4313/JKEM.2016.29.6.359
  13. J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee, J. Kim, K. W. Kim, H.-J. Noh, J.-H. Park, C. J. Bae, J.-G. Park, and T. Hyeon, "Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction," Advanced Materials, Vol. 17, No. 4, pp. 429-434, February, 2005. DOI:10.1002/adma.200400611
  14. S. D. Dhas, P. S. Maldar, M. D. Patil, A. B. Nagare, M. R. Waikar, R. G. Sonkawade, and A. V. Moholkar, "Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material," Vacuum, Vol. 181, No. 109646, November, 2020. https://doi.org/10.1016/j.vacuum.2020.109646
  15. B. Park, and E. J. Cairns, "Electrochemical performance of TiO2 and NiO as fuel cell electrode additives," Electrochemistry Communications, Vol. 13, No. 1, pp. 75-77, January, 2011. https://doi.org/10.1016/j.elecom.2010.11.017
  16. M. Szindler, M.M Szindler, L.A. Dobrzanski, and T. Jung, "NiO nanoparticles prepared by thesol-gel method for a dye sensitized solar cell applications," Vol. 92, No. 1, pp. 15-21, July, 2018. https://doi.org/10.5604/01.3001.0012.5507
  17. S. Safa, R. Hejazi, M. Rabbani, and R. Azimirad, "Hydrothermal synthesis of NiO nanostructures for photodegradation of 4-nitrophenol," Desalination and Water Treatment, Vol. 57, No. 46, pp. 21982-21989, 2016.https://doi.org/10.1080/19443994.2015.1125799
  18. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, and G. Lu, "Preparation of NiO nanoparticles in microemulsion and its gas sensing performance," Materials Letters, Vol. 68, p . 168-170, February, 2012. https://doi.org/10.1016/j.matlet.2011.10.039
  19. N. Kaur1, J. Singh1, G. Kaur, S. Kumar, D. Kukkar,and M. Rawat,"CTAB assisted co-precipitation synthesis of NiO nanoparticles and their efficient potential towards the removal of industrial dyes," Micro & Nano Letters, Vol. 14, No. 8, pp. 856-859, March, 2019. doi:10.1049/mnl.2018.5489
  20. S.J. Kim and H.S. Kwon, "Synthesis and Photo Luminescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor using Polymer Matrix,"Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 20, No. 8, pp. 671-679, January, 2007. DOI:10.4313/JKEM.2007.20.8.671
  21. Y. L. Song, S. H. Choi, S. J. Kim, Y. H. Song, T. Masaki, and D. H. Yoon, "Synthesis of nano sized Eu3+ doped Y(P,V)O4 phosphors by using cellulose assisted liquid phase precursor process," Journal of Ceramic Processing Research, Vol. 17, No. 3, pp. 202-204, 2016. DOI : 10.36410/jcpr.2016.17.3.202
  22. S.J. Kim and C.H. Han, "Synthesis of MgO nanoparticles using starch as precursor medium," Journal of Ceramic Processing Research, Vol. 19, No. 2, pp. 130~133, April, 2018. https://doi.org/10.36410/JCPR.2018.19.2.130
  23. S. Nakagomi, T. Yasuda, and Y. Kokubun, "Crystal Orientation of Cubic NiO Thin Films Formed on Monoclinic β-Ga2O3 Substrates," Basic Solid State Physics, Vol. 257, No. 5, 1900669, May, 2020. https://doi.org/10.1002/pssb.201900669