Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.9.1304

Synthesis of BiSrCaCu(Ni)O Ceramics from the Gel Precursors and the Effect of Ni Substitution  

Ahn, Beom-Shu
Publication Information
Abstract
Superconducting BiSrCaCu(Ni)O ceramicss have been prepared by the gel method using an aqueous solution containing a tartaric acid. The aqueous solution of metal salts was concentrated without precipitation. The precursor so prepared was homogeneou s and calcined at $825^{\circ}C$ for 24 h to produce superconducting phase. The thermal decomposition of gels, the formation of superconducting phase, and their ceramic microstructure were studied using IR, TGA, XRD, resistance measurements, and SEM. This method is highly reproducible and leads to powders with excellent homogeneity and small particle size for easy sinterability. The nickel dopant substituting for Cu gives rise to the gradual decrease of the Tc. Phase pure 2212 ceramics were obtained at 825 $^{\circ}C$ for 24 h. SEM pictures showed that liquid phase was formed when the samples were sintered temperatures higher than 825 $^{\circ}C$.
Keywords
Superconducting ceramics,Gel precursor,Homogeneity,Calcination,Dopant;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Venkatesan, T. J. Appl. Phys. 1988, 63, 4591.   DOI
2 Yoon, J. B.; Jang, E. S.; Kwon, S. J.; Ayral, A.; Cot, L.; Choy, J. H. Bull. Korean Chem. Soc. 2001, 22, 1111.
3 Sastry, P. V.; Yakmi, J. V.; Iye, R. M. Solid. State. Commun. 1989, 71, 935.   DOI   ScienceOn
4 Yamada, Y.; Murase, S. Jpn. J. Appl. Phys. 1988, 27, 996.
5 Matsuda, A.; Metsuno, Y.; Katayama, S. J. Mater. Sci. Lett. 1997, 8, 902.
6 Strutt, P. R.; Gonsalvas, K. E.; Xiao, T. D. J. Am. Ceram. Soc. 1993, 76, 987.   DOI
7 Chen, P. L.; Chen, I. W. J. Am. Ceram. Soc. 1996, 79, 3129.   DOI   ScienceOn
8 Bbergstrom, L.; Shinozaki, K.; Mizutami, N. J. Am. Ceram. Soc. 1997, 80, 291.   DOI
9 Choy, J. H.; Kwon, S. J.; Park, G. S. Science 1998, 280, 1589.   DOI   ScienceOn
10 Koyama, S.; Endo, U.; Kawai, T. Jpn. J. Appl. Phys. 1988, 27, 1861.   DOI   ScienceOn
11 Takano, M. Jpn. J. Appl. Phys. 1988, 27, 1401.   DOI
12 Guo, L.; Lee, J. H.; Beaucage, G. J. Non-Cryst. Solids 1999, 243, 61.   DOI   ScienceOn
13 Endo, U.; Koyama, S.; Kawai, T. Jpn. J. Appl. Phys. 1988, 27, 1476.   DOI   ScienceOn
14 Lee, S. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 2000, 104, 2490.   DOI   ScienceOn
15 Luo, J. S.; Michel, D.; Chavallier, J. P. Appl. Phys. Lett. 1989, 88, 1448.
16 Woo, X. D.; Inam, T.; Chase, E. W. Appl. Phys. Lett. 1988, 52, 754.   DOI
17 Whang, C. M.; Lim, S. S. Bull. Korean Chem. Soc. 2000, 21, 1181.
18 Yang, D. R.; Tsai, D. S.; Liu, H. C. J. Mater. Sci. 1995, 30, 4463.   DOI   ScienceOn
19 Spencer, N. D. Jpn. J. Appl. Phys. 1988, 28, 1564.   DOI
20 Hazen, M. Phys. Rev. Lett. 1988, 60, 1175.
21 Wang, X.; Henry, M.; Livage, J. Solid State Commun. 1987, 64, 881.   DOI   ScienceOn
22 Choy, J. H.; Lee, W.; Jang, E. S.; Kwon, S. J.; Hwang, S. J.; Kim, Y. I. Mol. Cryst. & Liq. Cryst. 2000, 341, 4479.