DOI QR코드

DOI QR Code

Synthesis of CuO nanoparticles by liquid phase precursor process

액상프리커서법에 의한 산화구리(CuO) 나노 입자의 합성

  • 신성환 (한라대학교 화학공학과)
  • Received : 2023.10.03
  • Accepted : 2023.11.10
  • Published : 2023.11.30

Abstract

Copper oxide (CuO) nanoparticles were successfully synthesized using a precursor in which industrial starch was impregnated with an aqueous solution of copper (II) nitrate trihydrate. The microstructure of the precursor impregnated with an aqueous solution of copper nitrate trihydrate was confirmed with a scanning electron microscope (SEM), and the particle size and the crystal structure of the copper oxide particles produced as the temperature of the heat treatment of the precursor increased was analyzed by X-ray diffraction (XRD) and the scanning electron microscope (SEM). As a result of the analysis, it was confirmed that the temperature at which the organic matter of the precursor is completely thermally decomposed is 450-490℃, and that the size and crystallinity of the copper oxide particles increased as the heat treatment temperature increased. The size of the copper oxide particles obtained through heat treatment at 500-800℃ during 1 hour was 100nm~2㎛. It was confirmed that the copper oxide crystalline phase is formed at a heat treatment temperature of 400℃, and only the copper oxide single phase existed up to 800℃. And it was also confirmed that the size of particles produced increased as the calcination temperature increased.

질산구리삼수화물염(copper(II) nitrate trihydrate) 수용액을 공업용 전분(starch)에 함침 시킨 전구체를 이용하여 산화구리(CuO) 나노 입자를 합성하였다. 주사전자현미경(SEM)을 통하여 질산구리삼수화물염 수용액이 함침된 전구체에 대한 구조를 분석하였고, 전구체에 대한 열처리 온도를 증가 시킴에 따라 생성되는 산화구리 입자의 입자 크기와 결정 구조를 X선회절분석법(XRD)과 주사전자현미경(SEM)으로 분석하였다. 분석 결과에 따르면, 전구체에서 유기물질이 완전히 열분해 되어지는 온도는 450-490℃이며, 열처리하는 온도가 증가함에 따라 생성되는 산화구리 입자의 크기와 결정성이 증가하는 것을 확인할 수 있었고, 또한 500-800℃에서 1시간씩 열처리하여 얻은 산화구리 입자의 크기는 100nm-2㎛인 것으로 나타났다. 하소 온도 400℃에서 산화구리 결정상이 형성되고, 800℃까지는 산화구리 단일상만 존재하며, 하소 온도의 증가에 따라 생성되는 입자의 크기가 커지는 것을 확인하였다.

Keywords

References

  1. M. S. Chavali and M. P. Nikolova, "Metal oxide nanoparticles and their applications in nanotechnology," SN Applied Sciences, Vol. 1, pp. 607, 2019.https://doi.org/10.1007/s42452-019-0592-3
  2. P. N. Dave, P. N. Ram and S. Chaturvedi, "Transition metal oxide nanoparticles: Potential nano-modifier for rocket propellants," Particulate Science and Technology, Vol.34, No.6, pp.676-680, 2016.https://doi.org/10.1080/02726351.2015.1112326
  3. R. Suriyaprabha, K. A. Sreeja, M. Prabu, P. Prabu and V. Rajendran, "Bioaccumulation of Transition Metal Oxide Nanoparticles and Their Influence on Early Growth Stages of Vigna unguiculata Seeds," Bio Nano Science, Vol.8, pp.752-760, 2018. https://doi.org/10.1007/s12668-018-0535-2
  4. A. Rydosz, "The Use of Copper Oxide Thin Films in Gas-Sensing Applications," Coatings, Vol.8, No.12, pp.425,2018. https://doi.org/10.3390/coatings8120425
  5. A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullaned and K. Kalantar-zadeh, "Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications," Journal of Materials Chemistry C, Vol. 2, pp. 5247-5270, Jun 2014. https://doi.org/10.1039/C4TC00345D
  6. R. Poreddy, C. Engelbrektb and A. Riisager, "Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air Check for updates,"Catalysis Science & Technology, Vol.5, pp.2467-2477, 2015.https://doi.org/10.1039/C4CY01622J
  7. R. Etefagh, E. Azhir, and N. Shahtahmaseb, "Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi." Scientia Iranica Transactions F: Nanotechnology, Vol.20, No.3, pp.1055-1058,2013. http://dx.doi.org/10.1016/j.scient.2013.05.015
  8. K. Phiwdanga, S. Suphankija, W. Mekprasarta, and W. Pecharapa,"Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors," Energy Procedia Vol.34, pp.740-745,2013.https://doi.org//10.1016/j.egypro.2013.06.808
  9. M. H. Yamukyan, K. V. Manukyan, and S. L. Kharatyan, "Copper oxide reduction by combined reducers under the combustion mode," Chemical Engineering Journal, Vol.137, No.3, pp.636-642, 2008,https://doi.org/10.1016/j.cej.2007.05.033
  10. S.J. Kim and H.S. Kwon, "Synthesis and Photo Luminescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor using Polymer Matrix,"Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol.20, No.8, pp.671-679, 2007. https://doi.org//10.4313/JKEM.2007.20.8.671
  11. S.J. Kim and C.H. Han, "Synthesis of MgO nanoparticles using starch as precursor medium," Journal of Ceramic Processing Research, Vol.19, No.2, pp.130-133, 2018. https://doi.org/10.36410/JCPR.2018.19.2.130
  12. S.J. Kim, "Synthesis and characterization of cobalt oxide nanoparticles by using industrial pulp as impregnated precursor", Journal of Ceramic Processing Research, Vol.22, No.1, pp.74-78, 2021.
  13. H.R. Naika, K.L. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, and H. Nagabhushana, "Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity", Journal of Taibah University fo Sciences, Vol.9, pp.7-12, 2015. https://doi.org/10.1016/j.jtusci.2014.04.006
  14. Z.S. Hong, Y. Cao, J.F. Deng, "A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles," Materials Letters, Vol.52, pp.34-38, 2002. https://doi.org/10.1016/S0167-577X(01)00361-5