• 제목/요약/키워드: liquid cooling

검색결과 901건 처리시간 0.034초

액체/전도냉각형 초전도 시스템에서 전류도입선의 열적 해석 (Thermal analysis of Current lead for Liquid/Conduction cooling on Superconducting system)

  • 권기범;김형진;정은수;장호명
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.178-181
    • /
    • 2003
  • Intermediate cooling for current lead is used of thermal link in conduction cooling and cooled of itself in liquid cooling because it is put in liquid. If a existing formula for cooling load and optimal diameter-length of current lead is applied, it generate some more cooling load. Therefore, variation of thermal link height and holding depth in liquid is considered. This result is used of reducing cooling load of current lead occupying most of superconducting system load and applying liquid/conduction cooling systems.

  • PDF

Performance Comparison of Liquid-Cooling with Air-Cooling Heat Exchangers Designed for Telecommunication Equipment

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권2호
    • /
    • pp.64-69
    • /
    • 2008
  • Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1, 2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to $27^{\circ}C$. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

ESS(Energy Storage System) 열관리를 위한 액침 냉각 활용에 대한 수치해석 연구 (Numerical Study on using Immersion Cooling for Thermal Management of ESS (Energy Storage System))

  • 함정균;유나영;신명재;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2024
  • The introduction of the sector coupling concept has expanded the scope of ESS utilization, resulting in the importance of thermal management of ESS. To ensure the safe use of the lithium-ion batteries that are used in ESS, it is important to use the batteries at the optimal temperature. To examine the utilization of liquid cooling in ESS, numerical study was conducted on the thermal characteristics of 21700 battery modules (16S2P array) during liquid cooling using Novec-649 as insulating fluid. The NTGK model, an MSMD model in ANSYS fluent, was used to investigate thermal characteristics on the battery modules with liquid immersion cooling. The results show that the final temperature of the battery module discharged at 5 C-rate is 68.9℃ using natural convection and 48.3℃ using liquid cooling. However, the temperature difference among cells in the battery module was up to 0.5℃ when using natural convection cooling and 5.8℃ when using liquid cooling, respectively, indicating that the temperature difference among cells was significantly increased when liquid cooling was used. As the mass flow rate increased from 0.01 kg/s to 0.05 kg/s, the average temperature of the battery module decreased from 48.3℃ to 38.4℃, confirming that increasing the mass flow rate of the insulating fluid improves the performance of liquid immersion cooling. Although partial liquid immersion cooling has a high cooling performance compared to natural convection cooling, the temperature difference between modules was up to 8.9℃, indicating that the thermal stress of the battery cells increased.

3D IC 열관리를 위한 TSV Liquid Cooling System (TSV Liquid Cooling System for 3D Integrated Circuits)

  • 박만석;김성동;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.1-6
    • /
    • 2013
  • TSV는 그동안 3D IC 적층을 하는데 핵심 기술로 많이 연구되어 왔고, RC delay를 줄여 소자의 성능을 향상시키고, 전체 시스템 사이즈를 줄일 수 있는 기술로 각광을 받아왔다. 최근에는 TSV를 전기적 연결이 아닌 소자의 열관리를 위한 구조로 연구되고 있다. TSV를 이용한 liquid cooling 시스템 개발은 TSV 제조, TSV 디자인 (aspect ratio, size, distribution), 배선 밀도, microchannel 제조, sealing, 그리고 micropump 제조까지 풀어야 할 과제가 아직 많이 남아있다. 그러나 TSV를 이용한 liquid cooling 시스템은 열관리뿐 아니라 신호 대기시간(latency), 대역폭(bandwidth), 전력 소비(power consumption), 등에 크게 영향을 미치기 때문에 3D IC 적층 기술의 장점을 최대로 이용한 차세대 cooling 시스템으로 지속적인 개발이 필요하다.

평면형 ECF 펌프를 이용한 전자기기 액체냉각 시스템 (Liquid Cooling System Using Planar ECF Pump for Electronic Devices)

  • 서우석;함영복;박중호;윤소남;양순용
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.95-103
    • /
    • 2007
  • This paper presents a liquid cooling concept for heat rejection of high power electronic devices existing in notebook computers etc. The design, fabrication, and performance of the planar ECF pump and farced-liquid cooling system are summarized. The electro-conjugate fluid (ECF) is a kind of dielectric and functional fluids, which generates jet flows (ECF-jets) by applying static electric field through a pair of rod-like electrodes. The ECF-jet directly acts on the working fluid, so the proposed planar ECF pump needs no moving part, produces no vibration and noise. The planar ECF pump, consists of a pump housing and electrode substrate, achieves maximum flow rate and output pressure of $5.5\;cm^3/s$ and 7.2 kPa, respectively, at an applied voltage of 2.0 kV. The farced-liquid cooling system, constructed with the planar ECF pump, liquid-cooled heat sink and thermal test chip, removes input power up to 80 W keeping the chip surface temperature below $70\;^{\circ}C$. The experimental results demonstrate that the feasibility of forced-liquid cooling system using ECF is confirmed as an advanced cooling solution on the next-generation high power electronic devices.

열전소자를 이용한 액체 냉각기의 냉각열전달 특성 (Cooling characteristics of a Liquid cooler Using Thermoeletric Module)

  • 박민영;이근식
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.197-202
    • /
    • 2007
  • In this study, the cooling characteristics of a liquid cooler using thermoelectric module was experimentally investigated. The experiment was conducted for various inner structures of liquid cooler (4 cases), hot fluid flow rates (0.15-0.25 L/min), number of T.E module (2, 4, 6 set), and the cooling water flow rates (200-600 cc/min) for both parallel and counter flow types. Among the results, better cooling performance geometry was selected. And experiment was also carried out to examine further enhancement of cooling performance by inserting coils (pitches: 0.2, 3, 6 mm) into the hot-fluid channel. Present results showed that the short serpentine type(case2) indicated the best cooling performance. In the case of coil pitch of 3 mm, the best cooling performance was shown, more than 10% increase of the inlet and outlet temperature difference, compared with the case of the cooler without coil. Consequently, the inserted coil pitch should be properly selected to improve cooling performance.

  • PDF

케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구 (A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel)

  • 한풍규;조원국;조용호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.83-88
    • /
    • 2003
  • 케로신과 액체 산소를 추진제로 하며, 10톤을 설계 추력으로 하는 우주 발사체의 2단용 액 체로켓엔진의 재생 냉각 특성 에 대한 해석적 연구를 수행하였다. 또한 보조적인 냉각 방법으로서 노즐 확장부에는 대기로의 복사 방열에 의한 냉각을 적용하였다. 본 연구를 통해, 케로신을 연료로 하는 10톤 추력의 2단용 액체로켓 엔진에서 재생 냉각과 복사 냉각에 의한 냉각 기구만으로는 냉각 방법으로 적합하지는 않다는 것을 확인하였다. 따라서 새로운 냉각 방법으로서 막냉각 기법이 도입되었으며, 액체로켓엔진의 열적 불안정성을 제거하는데 효과적인 냉각방법임을 알 수 있었다.

  • PDF

여름철 작업자들의 고체온증 예방을 위한 액체냉각복 개발 및 효과적인 냉각온도와 인체 냉각부위 탐색 (Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions)

  • 정재연;강주호;설선홍;이주영
    • 한국의류산업학회지
    • /
    • 제22권2호
    • /
    • pp.250-260
    • /
    • 2020
  • The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.

케로신과 액체산소를 추진제로 하는 10톤급 액체로켓엔진의 재생냉각 특성 평가 (Evaluation on the Regenerative Cooling Characteristics in Liquid Rocket Engine of 10tf-thrust using Kerosene and Liquid Oxygen as a Propellant)

  • 한풍규;조원국;조용호
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.111-117
    • /
    • 2004
  • 케로신과 액체산소를 추진제로 하며, 10톤을 설계 추력으로 하는 우주 발사체의 2단용 액체로켓엔진의 재생 냉각 특성에 대한 해석적 연구를 수행하였다. 또한 보조적인 냉각 방법으로서 노즐 확장부에는 대기로의 복사 방열에 의한 냉각을 적용하였다. 본 연구를 통해, 케로신을 연료로 하는 10톤 추력의 2단용 액체로켓엔진에서 재생냉각과 복사 냉각에 의한 냉각 기구만으로는 소재의 열 및 열구조적인 불안정성과 냉각채널에서의 과다한 압력강하에 의해 적합하지 않다는 것을 확인하였다.

스프레이가 분사되는 표면에서의 액막 두께 분포 측정 (Measurement of liquid film thickness distribution on sprayed surfaces)

  • 김태호;김명호;조형규;김병재
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.33-38
    • /
    • 2023
  • Spray cooling is a method of cooling high-temperature heating elements by spraying droplets. Recently, spray cooling has been proposed for use in next-generation nuclear reactors. When droplets are sprayed onto the outer wall of a heat exchanger tube, a film boiling occurs on the outer wall. Over time, the outer wall temperature decreases, and a liquid film forms on the outer wall, and the heat exchanger outer wall is subsequently cooled by the liquid film. In this case, the liquid film thickness has a great influence on the heat removal performance. In this study, an experimental study was conducted to measure the liquid film thickness distribution in a droplet spray environment. For this purpose, a method using the electrical conductivity of the liquid was adopted.