〈일반논문〉

Journal of the Korean Society of Visualization, Vol. 21, No. 3 (33~38), 2023 (Manuscript received : 2023.10.20/Revised : 2023.11.08/Accepted : 2023.11.08.) DOI:http://dx.doi.org/10.5407/jksv.2023.21.3.033

ISSN 1598-8430 Print ISSN 2093-808X Online

스프레이가 분사되는 표면에서의 액막 두께 분포 측정

김태호^{*} · 김명호^{**} · 조형규^{***} · 김병재[†]

Measurement of liquid film thickness distribution on sprayed surfaces

Tae Ho Kim*, Myung Ho Kim**, Hyoung Kyu Cho*** and Byoung Jae Kim+

Abstract Spray cooling is a method of cooling high-temperature heating elements by spraying droplets. Recently, spray cooling has been proposed for use in next-generation nuclear reactors. When droplets are sprayed onto the outer wall of a heat exchanger tube, a film boiling occurs on the outer wall. Over time, the outer wall temperature decreases, and a liquid film forms on the outer wall, and the heat exchanger outer wall is subsequently cooled by the liquid film. In this case, the liquid film thickness has a great influence on the heat removal performance. In this study, an experimental study was conducted to measure the liquid film thickness distribution in a droplet spray environment. For this purpose, a method using the electrical conductivity of the liquid was adopted.

Key Words : Spray Cooling (스프레이 냉각), Liquid Film Thickness (액막 두께), Liquid Conductivity (액체 전기전도도).

1. 서 론

스프레이 냉각은 고온의 표면에 냉각수를 액 적 형태로 분사하여 냉각하는 방법이다. 해당 냉각 기술은 시스템의 열유속을 효과적으로 제 어할 수 있기 때문에 다양한 산업분야에서 사용 되고 있다 (Liang (1)). 또한, 미세 액적의 분무로 인한 잠열 냉각을 활용하기 때문에 현열 냉각에

[†] Department of Mechanical Engineering, Chungnam National University, Associate Professor E-mail: bjkim@cnu.ac.kr

- * Department of Mechanical Engineering, Chungnam National University, M.S. Candidate
- ** TBM Technology Team, Korea Institute of Fusion Energy, Post-Doctor
- *** Department of Nuclear Engineering, Seoul National University, Professor

비해 냉각성능이 우수하다는 장점이 있다. 스프 레이 냉각은 격납건물 냉각에 사용하거나 가압 기에서 압력을 낮출 때 주로 사용되어 왔다. 최 근에는 스프레이 냉각을 차세대 원자로에서 활 용하는 방안이 제안되고 있다 (Yi (2)). 원자로에 서 발생한 고온의 증기를 열교환을 통해 냉각시 킬 때, 유로 외벽에 스프레이를 분사하여 증기 온도를 낮추거나 증기를 응축시킬 수 있다.

스프레이 냉각 성능 예측을 위한 많은 해석적 연구가 발표되고 있다 (Liang (3)). 스프레이 냉 각을 해석하기 위하여 DPM(Discrete Phase Model) 방법이 주로 수행되고 있다. 이 방법은 분사 노즐을 따로 모델링 하지 않고, 분무 액적 의 크기 및 속도 분포를 경계조건으로 입력하는 방법으로 온도나 유량 범위에 따라 다양한 연구 가 수행되었다 (Chen(4), Liu(5, 6)). 반면, 액막의 경계면 추적을 위해 VOF(Volume-Of-Fluid) 방법 을 이용한 해석도 수행되었으며 (Lee(7), Peng(8)), 최근에는 두 해석 방법을 결합한 하이브리드 해 석 연구가 활발히 수행되고 있다 (Chen (9), Jie (10)). 고온 표면에서의 스프레이 냉각은 주로 다음 과 같은 프로세스를 보인다. 냉각 초기에 고온의 유로에 분사된 액적은 막비등 (film boiling) 형태 가 된다. 이후, 시간이 지남에 따라 온도가 급격 히 감소하면서 유로 외벽은 스프레이에 의해 액 막 유동이 형성된다. 즉, 초기에는 분무 액적의 증발로 인한 잠열 냉각으로 급격한 온도 변화 구간이 형성되나, 이후 표면에 액막이 형성되면 서 원자로 내 증기는 열교환 튜브 외벽에 형성 된 액막 유동에 의해 냉각된다. 이렇게 형성된 액막의 두께는 냉각성능에 큰 영향을 미친다.

핵막 두께를 측정하기 위한 기술은 다양한 방 법으로 개발되어 왔으며 일반적으로는 초음파 기법, 전기적 기법, 광학적 기법, 중성자 기법 등 이 사용되고 있다 (Damsohn (11)). 이 중 전기적 기법은 액체의 전기 전도도를 이용해서 액막 두 께 분포를 측정하는 방법으로, 원자로 사고시 원자로 압력용기 내 액막 유동분포를 측정하는 데 주로 사용되어 왔다 (Lee (12), Choi (13)).

본 저자의 조사에 따르면, 현재까지 스프레이 냉각 관련 실험연구에서 액막 두께 분포 측정에 관한 실험적 연구는 아직 확인되지 않았다. 액 막두께 분포를 측정하는 광학적 방법들도 있으 나 이러한 방법은 다수의 액적이 존재하는 환경 에서는 액막을 측정하는데 한계가 있다. 이에 본 연구에서는 전도도 방법을 이용하여 스프레 이 분사에 의해 형성되는 액막 두께 분포를 측 정하고자 한다.

2. 측정 원리

Fig. 1은 액체의 전기전도도를 이용하여 액막 두께를 측정하는 원리를 설명한다. 전류는 전압 이 일정한 조건에서 전하가 흐를수 있는 매질 (저항)과 단면적에 따라 달라진다. 액막 두께가 커지면 교류 송신 전극과 수신 전극 사이의 임 피던스가 작아져서 전류가 증가한다. 따라서 전극

Fig. 1. Schematic of liquid film thickness measurement principle.

사이에 흐르는 전류를 측정하면 액막 두께를 알 수 있다.

3. 실험조건 및 실험장치

3.1 전극설계

액막 두께 측정 해상도는 전극의 집적도와 밀 접한 관계가 있다. 전극 사이의 간격이 작을수 록 측정 공간 해상도는 증가하나, 전극 사이의 간격은 예상되는 액막 두께 범위도 고려하여 결 정되어야 한다.

본 연구에서는 센서 측정부의 집적도를 높일 수 있도록 전극을 설계하였다. 최대 1.0 mm 두께 의 액막을 측정할 수 있는 조건에서 집적도를 향 상시키는 것을 목표로 하였다. 이를 위해 Damsohn (11)의2-전극 설계에 도입된 주기적 경계 조건을 고집적 액막 센서 설계에도 적용하였다.

Fig. 2는 고집적 액막 센서로 설계된 전극 형 상을 보여준다. 공간상에서 하나의 측정점은 각 주기적 경계(Periodic boundary) 내이며, 이 경계 내 평균 액막 두께가 측정된다. 각 측정점은 2개 의 송신전극(T)과 2개의 수신전극(R)으로 구성 된다. 좁은 공간 내 다수의 전극들이 밀집되면 서 발생할 수 있는 전류 누화 현상을 최소화하

Fig. 2. Electrode sensor design.

Fig. 3. Electrode sensors on a flexible circuit board.

기 위해 외곽의 사각 접지 전극(G)을 배치하였 다. 가운데 위치한 원형 접지 전극은 수신전극 의 측정 민감도를 높이는 역할을 한다.

Fig. 3은 액막 두께 측정을 위한 센서를 보여 준다. 전극들은 유연한 회로기판에 제작되었다. 유연한 기판으로 인하여 평면 뿐 아니라 곡면에 서의 액막 두께 분포 측정도 가능하다. 본 센서 는 4-layer로 설계해 각 전극별로 신호 간섭을 최소화하였고, FPCB를 제작하는 업체를 통하여 주문제작하였다.

3.2 액막 두께 교정실험

Fig. 4는 설계된 전극에 대한 액막 두께 측정 을 위한 교정 원리를 설명한다. 교정 순서는 다 음과 같다. 먼저 두께가 알려진 물체를 전극이 배치된 유연한 회로기판 위에 설치한다. 스포이 드를 이용하여 일정량의 물을 투여하고, 투여된 액막에서 공기방울을 제거한다. 그리고 전기전 도성 물질로 액막을 덮을 시, 단위 면적 내 전극 간 임피던스를 온전히 보존하기 위해 비전도성 물질인 아크릴 평판으로 액막 위를 덮는다.

Fig. 4. Schematic of liquid film thickness calibration.

Fig. 5. Experiment setup for liquid film thickness calibration.

Fig. 6. Calibration curve for liquid film thickness.

Fig. 5는 교정 실험 모습을 보여준다. 신호발 생기를 이용하여 1 kHz교류신호를 스위칭모듈 에 전달 한 후, 10 Hz 속도로 센서의 송신전극에 순차적으로 스위칭하여 전달한다. 액막을 통과 한 전류를 전압으로 변환하여 DAQ로 측정한다. Fig. 6은 교정결과를 보여준다. 액막 두께와

인가 교류 진폭을 변화시키며 수신전극을 통해 흐르는 전류 크기를 저항을 통해 전압으로 변환 하였다. 액막 두께가 증가하면 액막의 임피던스 가 낮아지고 많은 전류가 흐르게 되며, 그 결과 수신부를 통해 측정된 시간평균 RMS 전압 크 기도 증가한다. 각 데이터 포인트는 5회 실험하 여 평균한 값이다. 액막 두께 측정 오차를 줄이 기 위하여 큰 전압을 보이는 V_p = 10 V일 때 교 정 곡선을 액막 두께 측정시 사용하였다.

3.3 스프레이 분사 실험 조건

Fig. 7은 스프레이 실험 조건을 보여준다. 평

Fig. 7. Experimental conditions.

Fig. 8. Spray impingement on a vertical plane wall

면이 45°일 때와 90°일 때 두 경사면에 대하여 실험을 진행하였다. 노즐은 full-cone분사 형상 을 가진다. 물의 분사압력은 3bar이며, 각 실험 에서 150초 동안 스프레이를 분사하였다. Fig. 8 은 수직 평판에 스프레이를 분사하는 모습을 보 여준다. 스프레이 분사 유량은 0.5 L/min이다.

4. 결과 및 토의

Fig. 9와 Fig. 10은 각각 평판이 90°일 때와 45° 기울어져 있을 때 액막 두께 분포를 보여준다. 그림에서 (x, y) = (0, 0)은 노즐의 축방향과 평면 이 만나는 지점이다. 보는 바와 같이 (0, 0) 지점 에서 액막이 가장 두껍게 측정되고 있다. 그러 나 평균 액막 두께와 액막의 두께 형상측면에서 두 경우는 다른 결과를 보여준다.

90°수직 평판의 경우에는 액막 두께 분포가 대체로 수직 길이가 좀 더 긴 타원형이다. 액막 두께는 액막 속도에 큰 영향을 받는다. 유량 관 점에서 보면 일반적으로 액막 속도가 커지면 액 막 두께는 작아진다. 수직 평면의 경우에는 액 막 유동이 대체로 수직이며, 액막이 아래로 갈 수록 중력에 의해 유속이 빨라지고 액막 두께는 작아진다.

Fig. 9. Liquid film thickness (mm) distribution on the plane surface tilted at 90°.

Fig. 10. Liquid film thickness (mm) distribution on the plane surface tilted at 45°.

45°경사 평면에서는 액막 두께 분포가 좀 더 원형에 가깝다. 경사 평면에서는 액막이 상대적 으로 느린 속도로 하강한다. 그 결과 수직 평면 일 때와 비교하면 액막이 대체적으로 두껍고 분 사 모양대로 어느정도 유지된다. 액막 유동이 발생하는 스프레이 냉각에서 냉각 성능은 액막 두께 뿐 아니라 액막 속도의 영향도 받는다. 따 라서 동일한 액막 유량에서 액막이 두껍다고 냉 각 성능이 반드시 높은 것은 아니다. 본 연구의 한계점은 다음과 같다. 먼저 액적 크기 분포를 정량적으로 제공하지 않고 있다. 노즐로부터 분사되는 액적의 정량적인 특징은 액막 유동에 영향을 미칠 수 있으므로 향후 액 적 분사 특징을 좀 더 정량화 할 필요가 있다. 또한 Fig. 9와 Fig. 10에서 보는 바와 같이 액막 두께 측정 영역이 넓지 않다. 이는 제작된 회로 기판의 크기가 DAQ 채널 부족으로 전극의 수 가 한정되어 있기 때문이다.

본 연구의 목적은 분무 환경에서 액막을 측정 하는데 있다. 이에 다양한 분무 조건, 노즐의 분 사 방향 및 위치를 고려하지 못한 것이 본 연구 의 한계이다. 노즐 분사 길이가 길어지면 분사 면적이 증가하여 액막 두께는 얇아질 것으로 예 상된다

5. 결 론

공기 내 액적의 존재로 인하여 스프레이 분사 시 액막 두께 분포를 측정하는 것은 쉽지 않다. 본 연구에서는 전기 전도도를 이용하여 액막 두 께 분포를 측정 가능함을 보였다.유연한 회로기 판 위에 전극을 배치하였고, 교정실험을 통해 액막 두께 측정의 신뢰성을 확보하였다.

본 연구 결과는 향후 공기 내 액적 거동을 예 측하는DPM(Discrete Phase Model)과 벽면 위 액 막 유동을 예측하는 VOF(Volume-Of-Fluid)를 결 합한 Hybrid DPM-VOF 수치해석 모델을 검증하 는데 사용될 예정이다.검증된 수치해석 모델은 향후 차세대 원자로에 대한 스프레이 냉각 성능 예측에 사용될 예정이다. 또한 실제 고온 가열 체에 분사하여 가열체를 냉각하는 상황에서 액 막 두께를 측정하는 것으로 실험연구를 확장할 계획이다.

후 기

본 연구는 충남대학교의 연구비 지원으로 수행되었습니다.

REFERENCE

- Liang, G. and I. Mudawar, 2017, "Review of spray cooling-Part 1: Single-phase and nucleate boiling regimes, and critical heat flux," International Journal of Heat and Mass Transfer, Vol. 115, pp. 1174-1205.
- Yi, S.-J., Yang, J.-H., Jeon, B. G., Bae, Hwang, and Park, S.-K., 2023, "Concept of the asymmetric two-step thermosiphon for the containment cooling of small modular reactor," Submitted.
- Liang, G. and I. Mudawar, 2017, "Review of spray cooling-Part 2: High temperature boiling regimes and quenching applications," International Journal of Heat and Mass Transfer, Vol. 1155, pp. 1206-1222.
- 4) Chen, Z., Xie, Q., Chen, G., Yu, Y., and Zhao, Z., 2018, "Numerical simulation of single-nozzle large scale spray cooling on drum wall," Thermal Science, Vol. 22, pp. 359-370.
- Liu, H., Cai, C., Yan, Y.a., Jia, M., and B. Yin, 2018, "Numerical simulation and experimental investigation on spray cooling in the non-boiling region," Heat and Mass Transfer, Vol. 54, pp. 3747-3760.
- 6) Liu, H., Chen, H., Cai, C., Jia, M., and Yin, H., 2019, "Numerical investigation on the unsteady spray cooling of high temperature steel plate," International Journal of Heat and Mass Transfer, Vol. 143, 118342.
- 7) Lee, S.H., Hur, N., and Kang, S., 2011, "A numerical analysis of drop impact on liquid film by using a level set method," Journal of Mechanical Science and Technology, Vol. 25, pp. 2567-2572.
- Peng, C., Xu, X., and Liang, X., 2020, "Numerical investigation on crown behavior and energy evolution of droplet impinging onto thin film," International Communications in Heat and Mass Transfer, Vol. 114, 104532.

- 9) Chen, G., Fu, C., Xu, B., Wu, Y., Lien, F.-S., and Yee, E., 2022, "Internal mixing air-assisted spray nozzle for large droplets: Experimental measurements and numerical simulations," Journal of Aerosol Science, Vol. 165, 106035.
- 10) Jie, L. and Peng, K., 2022, "Modelling and analysis of initial icing roughness with fixed-grid enthalpy method based on DPM-VOF algorithm," Chinese Journal of Aeronautics, Vol. 35(7), pp. 168-178.
- Damsohn, M. and Prasser, H.-M. 2009, "High-speed liquid film sensor for two-phase flows with high spatial resolution based on electrical conductance," Flow Measurement and Instrumentation, Vol. 20(1), pp. 1 ~ 14.
- 12) Lee, K. B., Kim, J. R., Park, G. C., and Cho, H. K., 2017, "Feasibility test of a liquid film thickness sensor on a flexible printed circuit board using a three-electrode conductance method," Sensors, Vol. 17(1), 42.
- 13) Choi, C.-J. and Cho, H. K. 2020, "Effect of asymmetric airflow on liquid film behavior and emergency core coolant bypass in the downcomer geometry of a nuclear reactor pressure vessel," International Communications in Heat and Mass Transfer, Vol. 117, 104765.