Browse > Article
http://dx.doi.org/10.5805/SFTI.2020.22.2.250

Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions  

Jung, Jae-Yeon (Dept. of Textiles, Merchandising, and Fashion Design, Seoul National University)
Kang, Juho (Dept. of Physical Education, Seoul National University)
Seol, Seonhong (Dept. of Textiles, Merchandising, and Fashion Design, Seoul National University)
Lee, Joo-Young (Dept. of Textiles, Merchandising, and Fashion Design, Seoul National University)
Publication Information
Fashion & Textile Research Journal / v.22, no.2, 2020 , pp. 250-260 More about this Journal
Abstract
The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.
Keywords
liquid cooling garment; body regional difference; cooling temperature; heat stress; heat strain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, J. H., Kim, M. J., & Lee, J. Y. (2005). Efficacy of cooling vests for alleviating heat strain of farm workers in summer. Journal of the Korean Society of Clothing and Textiles, 29(8), 1176-1187.
2 Choi, J. H., Lee, J. Y., & Lee, W. K. (2013). Body temperature. Seoul: Gyomoon.
3 Crawshaw, L. I., Nadel, E. R., Stolwijk, J. A., & Stamford, B. A. (1975). Effect of local cooling on sweating rate and cold sensation. Pflugers Archiv, 354, 19-27. doi:10.1007/BF00584500   DOI
4 Cuttell, S. A., Kiri, V., & Tyler, C. (2016). A comparison of 2 practical cooling methods on cycling capacity in the heat. Journal of Athletic Training, 51(7), 525-532. doi:10.4085/1062-6050-51.8.07   DOI
5 DeGroot, D. W., Gallimore, R. P., Thompson, S. M., & Kenefick, R. W. (2013). Extremity cooling for heat stress mitigation in military and occupational settings. Journal of Thermal Biology, 38(6), 305-310. doi:10.1016/j.jtherbio.2013.03.010   DOI
6 Gao, C., Kuklane, K., & Holmer, I. (2011). Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment. European Journal of Applied Physiology, 111(6), 1207-1216. doi:10.1007/s00421-010-1748-4   DOI
7 Givoni, B., & Goldman, R. F. (1971). Predicting metabolic energy cost. Journal of Applied Physiology, 30(3), 429-433. doi:10.1152/jappl.1971.30.3.429   DOI
8 Hardy, J. D., & Dubois E. F. (1938) The technic of measuring radiation and convection. The Journal of Nutrition, 15(5), 461-475. doi:10.1093/jn/15.5.461   DOI
9 Holmer, I. (1995). Protective clothing and heat stress. Ergonomics, 38(1), 166-182. doi:10.1080/00140139508925093   DOI
10 Holmer, I. (2006). Protective clothing in hot environments. Industrial Health, 44(3), 404-413. doi:10.2486/indhealth.44.404   DOI
11 Korea Meterological Administration. (2018). Comparing the heat of 2018 and 1994. http://www.kma.go.kr/notify/press/kma_list.jsp?bid=press&mode=view&num=1193585
12 Hooker, D. N. (1991). U.S. Patent No. 5,062,424. Washington, DC: U.S. Patent and Trademark Office.
13 ISO 10551. (1995). Ergonomics of the thermal environment-assessment of the influence of the thermal environment using subjective judgement scales. Geneva: International Organization for Standardization
14 Kim, D. H., Bae, G. T., & Lee, J. Y. (2020). A novel vest with dual functions for firefighters: Combined effects of body cooling and cold fluid ingestion on the alleviation of heat strain. Industrial Health, 58(2), 91-106. doi:10.2486/indhealth.2018-0205   DOI
15 Kim, J. H., Coca, A., Williams, W. J., & Roberge, R. J. (2011). Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble. Journal of Occupational and Environmental Hygiene, 8(7), 409-416. doi:10.1080/15459624.2011.584840   DOI
16 Korea Centers for Disease Control and Prevention. (2018). 2018's hot temperature patient exceeded last year's occurrence and advised to take care during the holiday season. https://www.cdc.go.kr/board.es?mid=a20501000000&bid=0015&act=view&list_no=131765
17 Korean Industrial Health Association. (2014). Assumption of risk and reduction. pp. 29-39, https://kiha21.or.kr/monthly/2014/3/SOBGBO_2014_s311_29.pdf
18 Koscheyev, V. S., Coca, A., & Leon, G. R. (2007). Overview of physiological principles to support thermal balance and comfort of astronauts in open space and on planetary surfaces. Acta Astronautica, 60, 479-487. doi:10.1016/j.actaastro.2006.09.028   DOI
19 Lee, J. Y., Choi, J. W., & Kim, H. (2008) Determination of body surface area and formulas to estimate body surface area using the Alginate method. Journal of Physiological Anthropology, 27(2), 71-82. doi:10.2114/jpa2.27.71   DOI
20 Lee, J. Y., Nakao, K., & Tochihara, Y. (2011). Validity of perceived skin wettedness mapping to evaluate heat strain. European Journal of Applied Physiology, 111(10), 2581-2591. doi:10.1007/s00421-011-1882-7   DOI
21 Lee, J. Y., Saat, M., Chou, C., Hashiguchi, N., Wijayanto, T., Wakabayashi, H., & Tochihara, Y. (2010). Cutaneous warm and cool sensation thresholds and the inter-threshold zone in Malaysian and Japanese males. Journal of Thermal Biology, 5(2), 70-76. doi:10.1016/j.jtherbio.2009.11.002
22 Luomala, M. J., Oksa, J., Salmi, J. A., Linnamo, V., Holmer, I., Smolander, J., & Dugue, B. (2012). Adding a cooling vest during cycling improves performance in warm and humid conditions. Journal of Thermal Biology, 37(1), 47-55. doi:10.1016/j.jtherbio.2011.10.009   DOI
23 Nag, P. K., Pradhan, C. K., Nag, A., Ashtekar, S. P., & Desai, H. (1998). Efficacy of a water-cooled garment for auxiliary body cooling in heat. Ergonomics, 41(2), 179-187. doi:10.1080/001401398187233   DOI
24 Nakamura, M., Yoda, T., Crawshaw, L. I., Kasuga, M., Uchida, Y., Tokizawa, K., Nagashima, K., & Kanosue, K. (2013). Relative importance of different surface regions for thermal comfort in humans. European Journal of Applied Physiology, 113(1), 63-76. doi:10.1007/s00421-012-2406-9   DOI
25 Noe, R. (2015). How much weight soldiers carry, and incredible POV footage of a massive paratrooper drop. Core 77. https://www.core77.com/posts/41704/How-Much-Weight-Soldiers-Carry-and-Incredible-POV-Footage-of-a-Massive-Paratrooper-Drop
26 Stevens, C. J., Taylor, L., & Dascombe, B. J. (2017). Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat. Sports Medicine, 47(5), 829-841. doi:10.1007/s40279-016-0625-7   DOI
27 Nunneley, S. A. (1970). Water cooled garments: A review. Space Life Sciences, 2(3), 335-360. doi:10.1007/BF00929293   DOI
28 O'Hara, R., Eveland, E., Fortuna, S., Reilly, P., & Pohlman, R. (2008). Current and future cooling technologies used in preventing heat illness and improving work capacity for battlefield soldiers: Review of the literature. Military Medicine, 173(7), 653-657. doi:10.7205/MILMED.173.7.653   DOI
29 Rintamaki, H. (2005). Protective clothing and performance in cold environments. In: The 3rd International Conference on Human Environment System, Tokyo, Japan.
30 Shvartz, E. (1970). Effect of a cooling hood on physiological responses to work in a hot environment. Journal of Applied Physiology, 29(1), 36-39. doi:10.1152/jappl.1970.29.1.36   DOI
31 Taylor, N. A. S., Machado-Moreira, C. A., van den Heuvel, A. M. J., & Caldwell, J. N. (2014). Hands and feet: physiological insulators, radiators and evaporators. European Journal of Applied Physiology, 114, 2037-2060. doi:10.1007/s00421-014-2940-8   DOI
32 Tyler, C. J., Wild, P., & Sunderland, C. (2010). Practical neck cooling and time-trial running performance in a hot environment. European Journal of Applied Physiology, 110(5), 1063-74. doi:10.1007/s00421-010-1567-7   DOI
33 Tyler, C. J., & Sunderland, C. (2011). Cooling the neck region during exercise in the heat. Journal of Athletic Training, 46(1), 61-68. doi:10.4085/1062-6050-46.1.61   DOI
34 Yoon, S. K. (2015, June 16). 'Even if wearing protective clothing.' Nurse MERS infection['보호복 입었는데' 간호사 메르스 감염]. Seoul newspaper. Retrieved June 16, 2015, from https://www.seoul.co.kr/news/newsView.php?id=20150617500016
35 Chen, Y. T., Constable, S. H., & Bomalaski, S. H. (1997). A lightweight ambient air-cooling unit for use in hazardous environments. American Industrial Hygiene Association Journal, 58(1), 10-14. doi:10.1080/15428119791013017   DOI
36 Army Medical Surveillance Activity. (2012). Update: heat injuries, active component, U.S. Armed Forces, 2011. Medical Surveillance Monthly Report, 19, 14-16.
37 Arngrimsson, S. A., Petitt, D. S., Stueck, M. G., Jorgensen, D. K., & Cureton, K. J. (2004). Cooling vest worn during active warm-up improves 5-km run performance in the heat. Journal of Applied Physiology, 96(5), 1867-1874. doi:10.1152/japplphysiol.00979.2003   DOI
38 Bishop, P. A., Nunneley, S. A., & Constable, S. H. (1991). Comparisons of air and liquid personal cooling for intermittent heavy work in moderate temperatures. American Industrial Hygiene Association Journal, 52(9), 393-397. doi:10.1080/15298669191364929   DOI