• 제목/요약/키워드: linearized dynamic characteristics

검색결과 68건 처리시간 0.024초

유한요소법에 의한 펌프축계의 안정성해석 (Stability analysis of pump using finite element method)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

펄스전동기의 위치제어특성에 관한 해석적 연구 (Analytical Study of Position Control Characteristics of the Variable Reluctance Pulse motor)

  • 이윤종;장세훈;이용범
    • 전기의세계
    • /
    • 제28권1호
    • /
    • pp.59-66
    • /
    • 1979
  • The linearized models on per for mance dynamics of the pulse motor have been already proposed by many others. These models exhibit certain advantages of their own because of their simple formulation, but in many cases the models are proved to be inadequate for further accurate analysis of the motor dynamics, owing to impractical and rather rough assumptions in the derivation. In this study a dynamic state transition model is induced, using the equivalent circuit obtained from the operating principle of the variable reluctance pulse motor which turns out to be nonlinear equation. This nonlinear dynamic state equation is numerically analysed by the use of UNIVAC System/3(OS/3) digital computer at hand. In the course of the dynamic analysis of the performance characteristics of a testing motor, dependance of the inertia of rotor and load, the coefficient of viscous friction between rotor and housing, and the winding resistance of the stator is discussed and a comparative study of the machine constants is carried on as related to the design problem of the motor.

  • PDF

레일의 상하방향 불규칙성에 의한 차륜과 레일의 동 접촉력 (Dynamic Wheel/Rail Contact Force due to Rail Irregularities)

  • 이현엽
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.616-622
    • /
    • 1998
  • An analytical method has been developed to estimate the dynamic contact force between wheel and rail when trains are running on rail with vertical irregularities. In this method, the effect of Hertzian deformation at the contact point is considered as a linearized spring and the wheel is considered as an sprung mass. The rail is modelled as a discretely-supported Timoshenko beam, and the periodic structure theory was adopted to obtain the driving-point receptance. As an example, the dynamic contact force for a typical wheel/rail system was analysed by the method developed in this research and the dynamic characteristics of the system was also discussed. It is revealed that discretely-supported Timoshenko beam model should be used instead of the previously used continuously-supported model or discretelysupported Euler beam model, for the frequency range above several hundred hertz.

  • PDF

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

누설유량과 회전체동역학적 성능을 고려한 래버린스 씰 설계 (Labyrinth Seal Design Considering Leakage Flow Rate and Rotordynamic Performance)

  • 문민주;이정인;서준호
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.61-71
    • /
    • 2023
  • This study proposes a procedure for designing a labyrinth seal that meets both leakage flow rate and rotordynamic performance criteria (effective damping, amplification factor, separation margin, logarithmic decrement, and vibration amplitude). The seal is modeled using a one control volume (1CV) bulk flow approach to predict the leakage flow rate and rotordynamic coefficients. The rotating shaft is modeled with the finite element (FE) method and is assumed to be supported by two linearized bearings. Geometry, material and operating conditions of the rotating shaft, and the supporting characteristics of the bearings were fixed. A single labyrinth seal is placed at the center of the rotor, and the linearized dynamic coefficients predicted by the seal numerical model are inserted as linear springs and dampers at the seal position. Seal designs that satisfy both leakage and rotordynamic performance are searched by modifying five seal design parameters using the multi-grid method. The five design parameters include pre-swirl ratio, number of teeth, tooth pitch, tooth height and tooth tip width. In total, 12500 seal models are examined and the optimal seal design is selected. Finally, normalization was performed to select the optimal labyrinth seal designs that satisfy the system performance requirements.

회전기계의 진동저감을 위한 자동볼평형장치 (Automatic Ball Balancer for Vibration Reduction of Rotating Machines)

  • 정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

자동 볼 평형장치의 진동 해석 (Vibration Analysis of an Automatic Ball Balancer)

  • 박준민;노대성;정진태
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

자유관절을 가진 2링크 암의 동특성과 제어 (Dynamic Characteristics and Control of Two-Link Arm with Free Joint)

  • 유기호
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.216-223
    • /
    • 2000
  • A robot arm with free joints has some advantages over conventional ones. A light weight and low power consumed arm can be made by a reduction of the number of joint actuators. And this arm can easily overcomes actuator failure due to unexpected accident. In general such underactuated arm does not have controllability because of the lack of joint actuators. The two-link arm with a free joint introduced in this paper is also uncontrollable in the sense of linear system theory. However, the linearized system sometimes can not represent the inherent dynamic behavior of the nonlinear system. In this paper the dynamic characteristics of the two-link arm with a free joint in view of global motion including damping and friction effect of the joints is investigated. In the case of considering only the damping effect, the controllable goal positions are confined to a specific trajectories. But in the case of considering the friction effect, the system can be controlled to arbitrary positions using the friction of the free joint as a holding brake. Also numerical example of position control is presented.

  • PDF

본드선도기법을 이용한 차량용 V-벨트 CVT의 동특성 해석 (Analysis of dynamic characteristics for an automotive V-belt CVT by bondgraph modeling method)

  • 장성식;김현수
    • 오토저널
    • /
    • 제11권6호
    • /
    • pp.68-79
    • /
    • 1989
  • Dynamic characteristics for an automotive V-belt CVT with centrifugal and torque-ramp actuators was investigated by bondgraph modeling method. Ten(10) state space equations for the V-belt CVT were developed from the constructed bondgraph model and linearized for perturbation at steady state. As simulation results, speed ratio versus time curves were obtained. It was found that as the ratio of the moment of inertia of the pulleys increased, the stability of the V-belt CVT system decreased. Change in the ratio of the spring constants caused the magnitude of the change of the speed ratio, but had little effect on the settling time of the system became faster and the stability of the system improved. However, the sensitivity of the speed ratio decreased with the increasing .betha.

  • PDF

전기.유압 서보 밸브를 이용한 유압모터계의 회전수 제어 (Speed Control of Oil Hydaulic Motor Systems Using an Electrohydraulic Servo Valve)

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.405-410
    • /
    • 1999
  • Hydraulic pipeline between servo valve and actuator affect the dynamic characteristics of electrohydraulic servo systems in serveral ways. This paper deal with the speed control of oil hydraulic gear motor using electrohydraulic servo valve. The frequency and transient response of electrohydraulic servo valve coupled to a gear motor is anlayzed. In particular, the effect of short and long hydraulic pipelines between servo valve and gear motor is investigated. The dynamic characteristics of the speed control systems of gear motor with short pipeline is first described via frequency response experiments with small signal linearized analysis. Loner pipeline is applied distributed parameter pipeline model with consideration of frequency dependent viscous friction.

  • PDF