• 제목/요약/키워드: linear space algorithm

검색결과 325건 처리시간 0.03초

공압 제진 시스템의 해석과 설계: II. 시뮬레이션, 실험과 설계 최적화 (Analysis and Design of a Pneumatic Vibration Isolation System: Part II. Simulation, Experimental Verification and Design Optimization)

  • 문준희;박희재
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.137-146
    • /
    • 2004
  • This is the second of two companion papers concerned with the analysis and design of a pneumatic vibration isolation system. The properties of the system are clarified by observation of the transmissibility surface calculated by the models and algorithm developed in the first paper of this research. It Is shown that the nonlinear model proposed in this research is more closer to experimental results than the linear model that have been used in previous studies. The design optimization of the major design variables that affect the performance of the system is achieved by using the condition for attenuation, disturbance rejection and maximum damping in resonance peak. The design space search method is adopted for the optimization of the orifice area. The models, transmissibility calculation algorithms and design optimization techniques developed in this research are shown to be greatly helpful to the optimal design of the pneumatic vibration isolation system by experiment.

Mixed $\textrm{H}_2/\textrm{H}_\infty$ Robust Control with Diagonal Structured Uncertainty

  • Bambang, Riyanto;Uchida, Kenko;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.575-580
    • /
    • 1992
  • Mixed H$_{2}$/H$_{\infty}$ robust control synthesis is considered for finite dimensional linear time-invariant systems under the presence of diagonal structured uncertainties. Such uncertainties arise for instance when there is real perturbation in the nominal model of the state space system or when modeling multiple (unstructured) uncertainty at different locations in the feedback loop. This synthesis problem is reduced to convex optimization problem over a bounded subset of matrices as well as diagonal matrix having certain structure. For computational purpose, this convex optimization problem is further reduced into Generalized Eigenvalue Minimization Problem where a powerful algorithm based on interior point method has been recently developed..

  • PDF

혼돈이론을 이용한 일적산 일사량의 예측 (Prediction of Daily Solar Irradiation Based on Chaos Theory)

  • 조성인;배영민;윤진일;박은우;황헌
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.123-130
    • /
    • 2000
  • A forcasting scheme for daily solar irradiance on agricultural field sis proposed by application of chaos theory to a long term observation data. It was conducted by reconstruction of phase space, attractor analysis, and Lyapunov analysis. Using the methodology , it was determined whether evolution of the five climatic data such as daily air temperature , water temperature , relative humidity, solar radiation, and wind speed are chaotic or not. The climatic data were collected for three years by an automated weather station at Hwasung-gun, Kyonggi-province. The results showed that the evolution of solar radiation was chaotic , and could be predicted. The prediction of the evolution of the solar radiation data was executed by using ' local optimal linear reconstruction ' algorithm . The RMS value of the predicting for the solar radiation evolution was 4.32 MJ/$m^2$ day. Therefore, it was feasible to predict the daily solar radiation based on the chaos theory.

  • PDF

Sliding Mode Robust Control of Uncertain Delay Systems: Generalize Transformation Approach

  • Uahchinkul, K.;Ngamwiwit, J.;Phoojaruenchanachai, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.501-501
    • /
    • 2000
  • In this paper, the theoretical development to stabilize a class of uncertain time-delay systems via sliding mode control is presented. The system under consideration is described in state space model containing state delay, uncertain parameters and disturbance. The main idea is to reduce the state of delayed system, by employing the generalize linear transformation, into an equivalent one with no delay inside, which is easier to analyze its behavior and stability. Then, the sliding control approach is employed to find the stabilizing control law. Finally, a numerical simulation is illustrated to show the algorithm for applying the proposed theorems and the efffetiveness of the designed control law in stabilizing the controlled systems.

  • PDF

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권3호
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.

초소성재료의 압력성형에 관한 삼차원 유한요소해석 (3-D Finite Element Analysis of Superplastic Blow Forming)

  • 이기석;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.55-63
    • /
    • 1994
  • The analysis of superplastic sheet forming process is studied by the use of the finite element method using a convected coordinate system and a skew boundary condition. In the formulation, the large inelastic behavior of the superplastic material is described as incompressible, nonlinear, viscous flow. The formulation is then approximated to the finite dimensional space with the use of membrane elements, which results in algebraic linear equations. In addition to the finite element formulation, a pressure cycle control algorithm is combined in the analysis for optimization of the forming time, which deals with the maximization of the strain rate sensitivity, the protection of the thickness reduction, the consistency of the desired strain rate and improvement of formability.

  • PDF

유클리드 카메라 보정을 하지 않는 비디오 기반 증강현실 (Video-Based Augmented Reality without Euclidean Camera Calibration)

  • 서용덕
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제9권3호
    • /
    • pp.15-21
    • /
    • 2003
  • An algorithm is developed for augmenting a real video with virtual graphics objects without computing Euclidean information. Real motion of the camera is obtained in affine space by a direct linear method using image matches. Then, virtual camera is provided by determining the locations of four basis points in two input images as initialization process. The four pairs of 2D location and its 3D affine coordinates provide Euclidean orthographic projection camera through the whole video sequence. Our method has the capability of generating views of objects shaded by virtual light sources, because we can make use of all the functions of the graphics library written on the basis of Euclidean geometry. Our novel formulation and experimental results with real video sequences are presented.

  • PDF

Comparative Study on the Optimization Methods for a Motor Drive of Artificial Hearts

  • Pohlmann, Andre;LeBmann, Marc;Hameyer, Kay
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.193-199
    • /
    • 2012
  • Worldwide cardiovascular diseases are the major cause of death. Aside from heart transplants, which are limited due to the availability of human donor hearts, artificial hearts are the only therapy available for terminal heart diseases. For various reasons, a total implantable artificial heart is desirable. But the limited space in the human thorax sets rigorous restrictions on the weight and dimensions of the device. Nevertheless, the appropriate functionality of the artificial heart must be ensured and blood damage must be prevented. These requirements set further restrictions to the drive of this device. In the this paper, two optimization methods, namely, the manual parameter variation and Differential Evolution algorithm, are presented and applied to match the specifications of an artificial heart.

STABILITYANALYSIS OF LINGUISTIC FUZZY MODEL SYSTEMS IN STATESPACE

  • Kim, Won C.;Woo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.953-955
    • /
    • 1993
  • In this paper we propose a new stability theorem and a robust stability condition for linguistic fuzzy model systems in state space. First we define a stability in linear sense. After representing the fuzzy model by a system with disturbances, A necessary and sufficient condition for the stability is derived. This condition is proved to be a sufficient condition of the fuzzy model. The Q in the Lyapunov equation is iteratively adjusted by an gradient-based algorithm to improve its stability test. Finally, stability robustness bounds of a system having modeling error is derived. An example is also included to show that the stability test is powerful.

  • PDF

TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang Joo
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.705-710
    • /
    • 2010
  • Let $C_1(X)$ be a normed linear space over ${\mathbb{R}}^m$, and S be an n-dimensional subspace of $C_1(X)$ with spaned by {$s_1,{\cdots},s_n$}. For each ${\ell}$- tuple vectors F in $C_1(X)$, the two-sided best simultaneous approximation problem is $$\min_{s{\in}S}\;\max\limits_{i=1}^\ell\{{\parallel}f_i-s{\parallel}_1\}$$. A $s{\in}S$ attaining the above minimum is called a two-sided best simultaneous approximation or a Chebyshev center for $F=\{f_1,{\cdots},f_{\ell}\}$ from S. This paper is concerned with algorithm for calculating two-sided best simultaneous approximation, in the case of continuous functions.