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Abstract 
 

We propose a novel method for improving Wi-Fi positioning accuracy while reducing the 

energy consumption of mobile devices. Our method presents three contributions. First, we 

jointly and intelligently select the optimal subset of access points for positioning via maximum 

mutual information criterion. Second, we further propose local discriminant embedding 

algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively 

handled by existing linear techniques. Third, to reduce complexity and make input signal 

space more compact, we incorporate clustering analysis to localize the positioning model. 

Experiments in realistic environments demonstrate that the proposed method can lower energy 

consumption while achieving higher accuracy compared with previous methods. The 

improvement can be attributed to the capability of our method to extract the most 

discriminative features for positioning as well as require smaller computation cost and shorter 

sensing time. 
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1. Introduction 

With the rapid development of wireless technologies and pervasive availability of mobile 

devices, wireless positioning systems have become increasingly important in pervasive 

computing. Such systems enable a large number of location-based services [1], including 

emergency caller location identification, people navigation, and healthcare. For indoor use, 

Wi-Fi positioning system [2][3] is particularly preferred for its cost effectiveness. Most 

positioning systems deploy client-based architecture for its protection of the privacy of users 

[4]. However, this architecture processes all computation and sensing operations on 

power-limited mobile devices. Thus, a major challenge for Wi-Fi positioning is the reduction 

of energy consumption of mobile devices while ensuring high-level accuracy. A highly 

accurate positioning system may be useless [5][6] if it requires a frequent recharging of the 

mobile device. As a result, accuracy is not the only goal of positioning systems. The reduction 

of energy consumption is equally important.  

To save energy while achieving high-level accuracy, existing approaches generally fall into 

two categories: access point (AP) selection and feature extraction. In AP selection, only a 

subset of available APs is selected for positioning by measuring and ranking the importance of 

each AP independently. Several studies [6][7] have shown that a suitable subset of APs may 

reduce computation cost while ensuring accurate positioning. In feature extraction, a small 

number of the most significant features are generated and used for positioning by feature 

extraction methods, including principal component analysis (PCA) [8] and linear discriminant 

analysis (LDA) [9]. PCA and LDA may discard noisy information and reorganize location 

information more compactly, hence improving accuracy and reducing computation cost. 

However, both AP selection and feature extraction have their drawbacks. Current AP selection 

methods disregard the correlation of discriminant abilities of APs, which renders the previous 

measures of importance of each AP inaccurate. Furthermore, substantial redundancy still 

exists among chosen APs. In contrast, feature extraction methods, such as LDA and PCA, are 

both linear techniques that fail to handle the severe nonlinearity [10] of Wi-Fi positioning. 

This paper focuses on improving positioning accuracy while reducing energy consumption 

of mobile devices. We propose a novel method called LLDE-APS, which stands for the 

combination of Localized Local Discriminant Embedding (LDE) [11] and AP Selection. The 

proposed LLDE-APS improves accuracy by extracting location features with the strongest 

discrimination power. More importantly, LLDE-APS also reduces energy consumption 

considerably by minimizing the computation cost and sensing time required on mobile devices. 

Our method presents the following three contributions: First, we develop a joint and intelligent 

AP selection scheme based on the maximum mutual information (MMI) criterion. This 

scheme measures and ranks the discriminant ability of APs more accurately than previous 

schemes. Second, we further propose LDE to extract nonlinear discriminative features from 

selected APs. LDE effectively adapts the nonlinearity of RSS while maintaining energy 

efficiency for its linear property. Third, we employ the fuzzy c-means (FCM) clustering 

algorithm to localize the positioning model into sub-regions, where more compact input signal 

space and reduced model complexity are achieved.  

Experiments in a realistic office environment show that, compared with the weighted 

K-nearest neighbor (WKNN) and maximum likelihood (ML) methods, the proposed method 

achieves higher accuracy while reducing computation cost and sensing time by 90.2% and 

80.0%, respectively. 
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2. Related Work 

Indoor location information has become increasingly important in pervasive computing 

because people tend to spend most of their time in indoor environments, such as shopping 

centers or office buildings. Various indoor positioning systems [12], including radio frequency, 

ultra wideband, visual sensors, and Wi-Fi, have been developed. Among these systems, Wi-Fi 

positioning that uses received signal strength (RSS) has attracted the most attention because of 

its low cost. RSS can be easily obtained by the wireless adapter available in mobile devices, 

and no additional hardware is needed. Most Wi-Fi positioning systems deploy fingerprinting 

architecture [13], which has offline and online stages. In the offline stage, RSS fingerprints at 

reference locations are collected to construct the database called radio map. In the online stage, 

a real-time RSS signal is compared with the pre-stored radio map to estimate the location. This 

architecture aims to learn and establish the relationship between RSS and physical locations. 

Thus, several machine learning algorithms have been applied, including WKNN [14], ML [7], 

and artificial neural network (ANN) [15]. 

In Wi-Fi positioning, accuracy and energy efficiency are often contradicting goals. For 

example, a common method for improving accuracy is to use as many APs as possible during 

positioning. However, a greater number of APs used result in a higher computation cost 

required on mobile devices. Another way to improve accuracy is to collect more RSS samples 

in real-time [16]. However, the addition of sensing time may also increase the energy 

consumption of mobile devices. To avoid frequent recharging of mobile devices, energy 

consumption should be reduced as much as possible. Thus, a key challenge in Wi-Fi 

positioning is the achievement of accurate positioning while ensuring energy efficiency. 

To address this challenge, several AP selection methods have been proposed for positioning. 

Youssef et al. [7] chose a subset of available APs with the largest mean RSS values to reduce 

computation cost. However, large mean RSS values always result in large RSS variance at a 

fixed location. In such a case, distinguishing neighbor locations becomes more difficult, thus 

degrading the positioning accuracy. Chen et al. [6] considered measuring the discriminant 

ability of each AP and selected the most discriminative APs for positioning. In their work, the 

discriminant ability of each AP is measured independently based on location information gain 

value. These studies show that computation cost reduction may be achieved by selecting a 

proper subset of available APs. However, their approaches measure the discriminant ability of 

APs independently and disregard the interplay between APs. Furthermore, considerable 

redundancy still abounds among chosen APs because of their correlation. We thus propose a 

joint and intelligent AP selection scheme to choose the optimal subset of APs, where feature 

extraction is further incorporated to reduce redundancy among chosen APs. 

Another approach to address the challenge is through feature extraction methods. Fang et al. 

[8] proposed PCA to extract location features in a decorrelated space. Rather than discarding 

noisy APs, PCA extracts the feature components representing most of the data variance 

information in the original RSS space. However, the most descriptive features extracted by 

PCA are not necessarily suitable for discriminating different locations. Fang et al. [9] reported 

that LDA showed better accuracy performance than PCA because discriminative information 

was better captured by the former. However, both LDA and PCA suffer from severe 

nonlinearity of RSS. Nonlinearity of RSS results from complex signal propagation factors, 

such as the multipath effect, shadowing, and attenuations attributable to obstructions. 

Nonlinearity of RSS may be effectively addressed by kernel-based methods, such as kernel 

canonical correlation analysis [10] and kernel direct discriminant analysis (KDDA) [17]. Our 

previous work proposed the use of KDDA to extract discriminative features in a kernel-based 

space, where nonlinear RSS patterns may be captured well. Despite the higher accuracy, high 
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computation cost is required by KDDA to compute kernel functions. Thus, we propose LDE 

for discriminative feature extraction. LDE is capable of adapting to the nonlinearity of RSS, 

but computation efficiency is also maintained for its linear property. 

In addition, clustering analysis methods have been introduced to reduce computation cost in 

a large-scale positioning region. Clustering analysis divides the entire region into several 

sub-regions and independently develops the positioning model in each sub-region. Youssef et 

al. [7] first used a joint clustering technique to group reference locations. Locations sharing the 

same AP subset with the largest RSS values are clustered into one sub-region. However, due to 

uncertainty of RSS [18], the AP subset with the largest RSS values may vary with time and 

degrade the classification performance. Chen et al. [6] applied k-means clustering to generate 

clusters automatically. The k-means compresses the input space by maximizing within-class 

similarity and minimizing between-class similarity. However, the k-means algorithm also 

suffers from uncertainty and nonlinearity of RSS. We thus propose FCM for clustering 

analysis, which performs better than k-means through the use of fuzzy principles. 

3. The Proposed LLDE-APS Method 

This section first outlines the proposed LLDE-APS method. Clustering analysis using the 

FCM clustering algorithm is then introduced to localize the positioning model into sub-regions. 

Then, we propose a novel joint and intelligent AP selection scheme based on the MMI 

criterion. Finally, we further propose LDE to extract the nonlinear discriminative features. 

3.1 Overview of LLDE-APS 

The proposed LLDE-APS method includes offline and online stages, as seen in Fig. 1. The 

offline training stage can be performed on a powerful server with sufficient computation 

resources, whereas the online positioning stage is performed on source-weak mobile devices. 

 

 

Fig. 1. Architecture of the proposed LLDE-APS method 

During the offline stage, we first collect RSS values at pre-defined reference locations to 

build the radio map. The entire region is then divided into k  sub-regions using clustering 

analysis. Each sub-region corresponds to a sub-radio-map. We then develop an independent 

AP selection strategy based on the MMI criterion and obtain the transformation matrix of LDE 

in each sub-radio-map. Finally, we build the related transformed map for each sub-radio-map. 

The transformed maps include the average feature vector at each reference location, which is 
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computed by averaging the transformed feature samples at each reference location. 

During the online stage, we first classify the real-time RSS signal into a related 

sub-radio-map P . The real-time feature vector is then obtained based on AP selection and 

LDE transformation P . The Euclidean distances between the real-time feature vector and 

pre-stored average feature vectors at each reference location are computed. Finally, the 

location is estimated by linearly combining the coordinate vectors of the K nearest reference 

locations, the weights of which are corresponding inverse distances. In fact, the pattern 

matching algorithm used in LLDE-APS is the widely used WKNN algorithm. However, the 

input signals are not the original RSS signals. We explore AP selection to discard noisy APs 

and then extract discriminative features by LDE. As a result, the input singals become the 

location features with enhanced discrimination power and reduced dimension. 

3.2 Clustering Analysis for Localizing the Positioning Model 

3.2.1 Necessity for Localizing the Positioning Model 

Localizing Wi-Fi positioning for a large-scale positioning region has two advantages. First, a 

localized positioning model improves positioning accuracy. The optimal AP selection and 

subsequent feature extraction solutions are determined by associated statistical properties of 

RSS signals, such as RSS variance at a fixed location and RSS differences among different 

locations. However, these statistical properties always vary with physical locations. For 

example, RSS variances at reference locations nearer to the AP are always larger than those 

farther from the AP. Therefore, a monolithic positioning model for the entire region is 

suboptimal. By localizing the positioning into sub-regions, more suitable AP selection and 

feature extraction solutions are obtained, thus improving accuracy.  

Second, a localized positioning model reduces the computation cost significantly. For 

pattern-matching-based positioning methods, such as WKNN and ML, the computation cost is 

proportional to the size of the radio map. By localizing the positioning into the sub-region, the 

computation cost significantly decreases because of the smaller number of reference locations. 

3.2.2 Clustering Analysis Using the Fuzzy C-Means Algorithm 

For clustering analysis in Wi-Fi positioning, a high probability of classifying the user into the 

right sub-region should be ensured because a wrong classification may yield a large 

positioning error. However, the uncertainty and nonlinearity of RSS signals degrade the 

classification performance of existing clustering methods, such as k-means. We adopt the 

FCM clustering algorithm [19] in this paper. FCM has been widely used and has a highly 

robust classification performance even with noisy and nonlinear data. 

FCM partitions N   reference locations  1, ,iz i N   into k  clusters  1, ,lS l k . 

Each cluster lS  is associated with a cluster center lC . The relationship between every 

reference location and the cluster is fuzzy. That is, the degree of iz  belonging to jC  is 

represented by a membership [0,  1]iju  . Each reference location iz  is represented by the 

related average RSS vector i
x . All reference locations is denoted as  ,  1, ,iS i N   x . 

FCM aims to minimize the objective function: 2

1 1

k N m

ij ijj i
J u D



 
   with the constrained 

function:
1

1,  for 1 to 
k

ijj
u i N


  , where 2m   is the fuzzifier parameter; k  is the number 

of clusters; N   is the number of reference locations; and ijD  is the Euclidean distance 

between the average RSS vector i
x  and the cluster center jC . FCM divides the reference 
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locations in such a way that RSS signals assigned to the same cluster should be as similar as 

possible, whereas two signals from different clusters should be as dissimilar as possible. 

FCM involves the iterative generation of a set of fuzzy cluster centers and associated 

memberships of each reference location. FCM starts by randomly selecting k  reference 

locations as initial cluster centers and is processed as follows: 

1. Input a set of k  initial cluster centers   0 0 , 1 ,jSC j k C . Set 1p  . 

2. For cluster centers   , 1, ,p jSC p j k C  at the  thp  step, compute the Euclidean 

distance ,  1, , ,  1, ,ijD i N j k  . Update memberships iju :  
  

1
1 1

1

mk

ij ij ill
u D D





  . 

3. Update the cluster center:  
1 1

1
N Nm i m

j ij iji i
p u u

 

 
  C x  to obtain 1pSC  . 

4. Stop the iterations if    
2

1 , 1, ,j jC p C p j k     is satisfied, where 0   is a 

small value; otherwise, set 1 p p  , and go to step 2. 

During the offline stage, we generate the fuzzy clusters and the related fuzzy cluster centers. 

During the online stage, we first compute the Euclidean distance between the real-time RSS 

vector and the pre-stored fuzzy cluster centers, and the user is then classified into the cluster, 

the cluster center of which is nearest to the real-time RSS vector.  

3.3 Joint and Intelligent Access Point Selection 

3.3.1 Motivation 

First, we present the motivation for AP selection.The rapid development of Wi-Fi and the 

increasing demand for wideband mobile communications have resulted in the deployment of a 

high-density of APs at many indoor environments, such as offices and universities [20]. 

Dozens of APs are always available at a fixed location. Thus, a simple way to improve 

positioning accuracy is to use as many APs as possible because each AP may provide a unique 

view of the user’s physical location. However, a high-dimensional input space comprising a 

large number of APs may increase computation cost and thus give rise to the overfitting 

problem. Furthermore, not all APs improve positioning accuracy. Some APs with poor 

discriminant ability may introduce noise and degrade accuracy. Therefore, selecting the most 

discriminative APs and discarding noisy ones are necessary. 

We then present the motivation for the proposed joint and intelligent AP selection scheme. 

Current AP selection schemes measure the discriminant ability of each AP individually. 

However, they all ignore the correlation of the discriminant abilities of APs, thus incurring an 

inaccurate measurement of the joint discriminant ability of APs. We propose a joint and 

intelligent AP selection scheme based on the MMI criterion (called JointMMI) [21]. Mutual 

information measures the amount of uncertainty reduction given knowledge about the RSS 

values from APs. The subset of available APs with the MMI is chosen for positioning. 

3.3.2 AP Selection Based on MMI Criterion 

We first introduce the computation of individual mutual information gained from each AP and 

then generalize the computation into the joint mutual information gain. The individual mutual 

information gained from iAP  is obtained by computing the two entropy values as follows: 

 

( ) ( ) ( )i iMuInfo AP H H AP L L                                            (1) 

where L  denotes the user’s coordinate variable in target positioning region; ( )H L  denotes 

the entropy of the coordinate variable without knowing any information from AP; and 
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( )iH APL  denotes the conditional entropy of the coordinate variable knowing RSS from 
iAP . 

In fingerprinting positioning, we collect RSS values from APs at discrete reference locations. 

Thus, we compute the entropy values approximately over the reference locations:  

 

1

1

( ) ( ) log ( )

( ) ( , ) log ( )

N

j j

j

N

i j i j i

v j

H Pr Pr

H AP Pr AP v Pr AP v





 

   





L L L

L L L

                          (2) 

 

where jL  indicates the coordinate vector of the  thj  reference location; v  stands for all 

possible RSS values from iAP ; N  is the number of reference locations in the sub-region; 

( )jPr L  is the prior probability of the  thj  reference location, which is assumed to be 

uniformly distributed; and ( )j iPr AP vL  is the conditional probability computed as follows: 

 

( ) ( ) ( ) ( )j i i j j iPr AP v Pr AP v Pr Pr AP v   L L L                            (3) 

 

In (3), ( )i jPr AP v L  is computed through the statistical result at the reference location.  

We then show how to compute the joint mutual information gained from APs subsets. Using 

1( , , )tAP AP  for positioning, associated joint mutual information is computed as follows: 

 

 
1

1 1

1 2 1 1

1

( , , ) ( ) ( , , )

( , , , ) ( , , , ) log
t

t t

N

t j t t

v v j

MuInfo AP AP H H AP AP

H AP AP AP Pr AP v AP v Pc


 

     

L L

L L
          (4) 

where 1 1= ( , , )j t tPc Pr AP v AP v L  is computed as given: 

 

 1 1 1 1 1 1( , , ) ( , , ) ( ) , ,j t t t t j j t tPr AP v AP v Pr AP v AP v Pr Pr AP v AP v      L L L

(5) 

RSS values from different APs at fixed locations can be assumed to be independent from one 

another [7]. Then, (5) can be computed as follows: 

 

1 1

1

1 1 1 1

1

( , , ) ( )

( , , ) ( , , ) ( )

t

t t j i i j

i

N

t t t t j j

j

Pr AP v AP v Pr AP v

Pr AP v AP v Pr AP v AP v Pr





   

    





L L

L L

                 (6) 

 

The computation cost of the proposed AP selection scheme is substantive and increases 

with the number of reference locations and APs. However, the number of reference locations 

is always limited in a sub-radio-map after clustering analysis. More importantly, we may 

perform it during offline stage, which does not incur any online computation cost. In contrast, 

online computation cost may be reduced by AP selection because the number of APs involved 
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in online positioning is reduced significantly. 

3.4 Feature Extraction Using LDE 

3.4.1 Advantages of Using LDE 

Wi-Fi positioning can be viewed as a pattern classification problem. Each reference location is 

considered a class labeled by related RSS samples. Classification performance is primarily 

determined by two factors, namely, ratio of training sample size to feature dimensions and 

discrimination power of the features. Although AP selection may reduce feature dimension by 

discarding noisy APs, substantive redundancy still exists among chosen APs. Thus, feature 

extraction methods, including LDA and PCA, have been used to reduce dimensionality. 

However, both of them become less efficient with the severe nonlinearity of RSS. 

Nonlinear dimensionality reduction for Wi-Fi positioning can be addressed based on the 

manifold assumption. Manifold-based dimensionality reduction methods [22][23] have been 

successfully applied in numerous machine learning problems. The manifold assumption 

involves high-dimensional data that lie close to a low-dimensional nonlinear manifold 

embedded in ambient space. In the presence of little noise during Wi-Fi positioning, each 

two-dimensional physical location vector will uniquely determine a high-dimensional RSS 

vector. Thus, the original RSS signal space will be mapped onto a two-dimensional manifold. 

Although RSS always appears to be noisy, RSS data are always assumed to lie close to a 

nonlinear manifold embedded in ambient space.  

Under the manifold assumption, LDE is a promising technique for nonlinear dimensionality 

reduction. Manifold is approximately represented by constructing a neighborhood graph. Thus, 

nonlinearity is handled well by preserving locality geometry. Simultaneously, class 

information is explored to enhance the discrimination power. Moreover, several nonlinear 

techniques can be applied for nonlinear dimensionality reduction. However, they are always 

computationally expensive. Conversely, LDE may effectively extract low-dimensional 

nonlinear features, while retaining low computation cost for its linear property. 

3.4.2 LDE 

Given n-dimensional RSS samples ix   1, ,i M , LDE extracts features as given: 

T

i iy A x , where 1 2[ , , , ]dA a a a  is the transformation matrix, 1 2, , ,
T

d

i i i iy y y   y  is the 

d-dimensional feature vector of ix , r

iy  is the r th feature component, il  is the class label of 

ix , and M  is the number of RSS samples in the sub-region. LDE aims to keep neighbor 

samples of the same class close and to distance neighbor samples of different classes.  

To achieve this objective, two undirected neighborhood graphs G  and G  are first 

constructed over all samples. The graph G  adds the edge between ix  and jx  if i jl l  and ix  

is a neighbor sample of jx . For G , an edge between ix  and jx  is added if i jl l  and ix  is a 

neighbor sample of jx . W  and W  are sparse and symmetric affinity matrices of G  and G , 

respectively. LDE aims to address the following optimization problem: 

 

 
2 2

, ,

Maximize  ,  Subject to  1T T T T

i j ij i j ij

i j i j

J w w    A A x A x A x A x        (7) 

where, if ix  connects jx  in G ,  2

expij i jw    x x ; otherwise, 0ijw  . If ix  

connects jx  in G ,  2

expij i jw   x x ; otherwise, 0ijw  .  
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The optimization in (7) is solved as a generalized eigenvalue problem: 

 

    ,  1, ,T T

i i i i d     X D W X a X D W X a                             (8) 

 

where  1 2, , , MX x x x , 
1 2 d     , ijw  and ijw  are the elements of W  and W , 

respectively, and the diagonal elements of diagonal matrices D  and D  are ii ijj
d w   and 

ii ijj
d w , respectively. Each feature component corresponds to an eigenvalue: 

 

    , 1, ,T T T T

i i i i i i d      a X D W X a a X D W X a                            (9) 

 

where the numerator of the right side in (9) measures the between-class distance of neighbor 

samples, and the denominator measures the within-class distance of neighbor samples. A 

larger between-class distance and smaller with-class distance render stronger discrimination 

power of the feature component. Thus, the discrimination power of a feature vector can be 

indicated by the accumulative percentage of related eigenvalues. We determine the dimension 

of the extracted features by setting a threshold * : 

 

  *

1 1

d n

i j

i j

d   
 

                                                    (10) 

 

The smallest integer value satisfying (10) is set as the feature dimension. In the offline training 

stage, we find that a practical approach is to choose *  between 80% and 90%. 

4. Analysis on Energy Savings in the LLDE-APS Method 

Energy efficiency in wireless networks has attratced considerable attention [24][25]. This 

paper focuses on reducing the energy consumption of mobile devices while achieving 

high-level Wi-Fi positioning accuracy. We explore three approaches in LLDE-APS. First, 

rather than broadcasting a probe frame, we collect RSS signals from APs in a passive scanning 

mode, which saves a significant amount of energy. Second, we reduce the computation cost on 

mobile devices by minimizing the dimension of location features involved in positioning. The 

third approach is the maximization of the sleep time of the mobile device by minimizing the 

required number of RSS samples to be collected in real-time. 

A network interface card (NIC) has two modes in collecting RSS signals from APs, namely, 

passive scanning and active scanning. In passive scanning, NIC receives the beacons 

periodically sent by APs. The signal strength and identification of the AP contained in the 

beacons are collected and used for positioning. In active scanning, rather than receiving the 

beacons from the APs, NIC broadcasts a probe frame, and all APs within range respond with a 

probe response. NIC then obtains RSS signals from the probe response frames. The major 

advantage of the active scanning mode is that it may obtain RSS signals from APs 

immediately, without waiting for a beacon period. However, the default beacon period is 

always 100 ms, which is sufficiently small for real-time positioning. More importantly, the 

active scanning mode consumes substantially more power than the passive mode. As shown in 

[5][26], the energy consumption mode of NIC in a Wi-Fi system includes the Sleep mode, Idle 
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mode, and the two transmission modes. The two transmission modes comprise transmitting 

packages (TX) and receiving packages (RX). Ebert et al. [26] reported that, in the Sleep, Idle, 

RX, and TX modes, the average energy consumption values were approximately 20, 110, 900, 

and 2500 MW, respectively. The adopted passive scanning mode does not need to send probe 

frames actively, thus decreasing energy consumption compared with the active mode. 

Another approach for saving energy is the reduction of the computation cost on mobile 

devices. In our method, we first localize the positioning model into a sub-region. In each 

sub-region, the number of reference locations is considerably smaller than that in the entire 

positioning region. We then reduce the dimension of input signal space further by discarding 

noisy and useless APs. Finally, we deploy LDE to extract a small set of the most 

discriminative features for positioning. As will be seen in Section 5.5, compared with the other 

methods, the dimension of location features is minimized by our method, thus decreasing the 

computation cost on mobile devices. 

The third approach is to lengthen sleep time of mobile devices by minimizing sensing time. 

Our method ensures this condition by minimizing the number of real-time RSS samples 

required while achieving the same accuracy. Ergen et al. [27] reported that most of the energy 

was wasted in overhearing data intended for other stations. Without a transmission task, NIC 

may revert to the sleep mode to save energy until a “wake up” packet arrives. Thus, reducing 

energy consumption requires a reduction in sensing time. You et al. [28] and Zhuang et al. [29] 

reported that users may trade higher energy consumption reduction for lower positioning 

accuracy by adapting sensing frequency. In contrast, we optimize the positioning method itself 

to make the algorithm robust to the number of reduced real-time samples. Our method 

effectively extracts the most discriminative features while discarding noisy and redundant 

information. In Section 5.6, we will show that our method outperforms other methods in terms 

of accuracy despite using only a small fraction of real-time samples. Thus, our method 

facilitates a longer sleep time during online positioning. 

5. Experimental Results and Discussions 

In this section, we first describe the experimental setup. Next, clustering analysis results are 

explored. We then compare the performance of the proposed AP selection and feature 

extraction methods with previous approaches (Sections 5.3 and 5.4). We subsequently 

demonstrate the online computation cost and sensing time reduction of the proposed method 

(Sections 5.5 and 5.6). Finally, we validate the improvement in accuracy of the proposed 

method in two classic indoor positioning environments.  

5.1 Experimental Setup 

To evaluate the proposed LLDE-APS, we performed the experiments in a classic indoor office 

environment (i.e., part of the building of our department), as shown in Fig. 2. We collected 

realistic RSS samples within the shading target region, the size of which was 25.3 m 24.7 m . 

A total number of 24 APs were available in the region, and an average number of 15 APs were 

covered at each location, with 8 APs seen in the target region and the other APs in the adjacent 

regions or other floors. A total of 5,500 training samples at 55 reference locations were 

collected to build the radio map, with 100 samples per location. We also collected 5500 testing 

samples at 55 test locations to evaluate the performance. Reference locations were separated 

from one another by about 2 m, and test locations were uniformly selected in the target region. 

The sensing rate is 2 samples per second. We obtained a real-time RSS sample vector by 

averaging two testing samples and using it to estimate the location. 
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Fig. 2. Experimental environment includes two rooms (Rooms 1 and 2) and three hallways (HW 1, HW 

2, and HW 3). The entire region is divided into five clusters, namely, C1, C2, C3, C4, and C5. 

The entire positioning region is divided into five clusters: C1, C2, C3, C4, and C5. The number 

of reference locations is 16, 12, 9, 8, and 10 from C1 to C5, respectively. The same is true for 

the number of test locations. In each cluster, an independent AP selection scheme and LDE 

transformation solution are developed. For simplicity, the AP selection and feature extraction 

results are only presented and discussed in C1, although similar improvements are obtained in 

the other clusters. We define positioning accuracy as the cumulative error distance distribution. 

The error distance is the Euclidean distance between the actual coordinate of the user and the 

estimated result. We split the training samples into 10 folds and use 10-fold cross validation 

to obtain the optimal parameters of LLDE-APS. The real parameter values of the 

positioning model are set by the best validation accuracy.  

5.2 Clustering Analysis Result 

In this section, we first compare the classification accuracy of the proposed FCM with the 

widely used k-means algorithm. Classification accuracy is defined as the probability of 

classifying the user into the correct sub-region. Fig. 3 compares the offline classification 

accuracy between FCM and k-means versus the number of clusters. The classification 

accuracy decreases gradually as the number of clusters increases because the smaller clusters 

are more similar to one another, making them difficult to distinguish from one another. 

However, the classification accuracy of FCM is higher than that of k-means algorithm. FCM 

effectively handles the uncertainty of RSS and generates more representative cluster centers 

by introducing fuzzy principles. The effectiveness of FCM can also be verified by the 

clustering result shown in Fig. 2. The physical adjacent reference locations are all divided into 

the same sub-regions, rendering more compact signal space. We only deploy 13 APs with 

maximum RSS values for clustering analysis because the classification accuracy is 

comparable to that using all APs, while reducing computation cost. 

We then show the effect of the number of clusters on positioning accuracy. Both the FCM 

and k-means algorithms are combined with the proposed AP selection scheme and LDE 

algorithm. As shown in Fig. 4, clustering analysis using FCM results in significant accuracy 

improvement. Compared with the positioning model built over the entire region, the localized 

model with cluster number 5k   increases the testing accuracy within 2 m from 67.2% to 

73.7%. In each sub-region, a more suitable AP selection scheme and LDE transformation 

matrix are obtained in the more compact RSS signal space. However, the smaller clusters have 
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lower classification accuracy. The best balance is kept when the number of clusters 5k  . Fig. 

4 also shows that FCM achieves higher positioning accuracy than k-means because the 

classification accuracy of the former is higher than that of the latter. Furthermore, little online 

computation cost is required on mobile devices because the generation of fuzzy cluster centers 

in FCM can be performed offline. The online computation cost of FCM is the same as that of 

k-means, which merely needs to compute the Euclidean distance between the real-time RSS 

sample and the k  cluster centers to identify the nearest cluster center.  

 

 

Fig. 3. Classification accuracy versus the number of clusters 

 

 

Fig. 4. Accuracy within 2 m versus the number of clusters 

5.3 AP Selection Result 

In this section, we study the effect of various AP selection schemes on the testing accuracy of 

LLDE-APS in cluster 1, which has 21 APs. Various AP selection schemes are combined with 

related optimal LDE transformation. Fig. 5 compares the accuracy within 2 m among four AP 

selection schemes: InfoGain, in which the APs are ranked in descending order of the 

individual information gain values; MaxMean, in which the APs are ranked in descending 

order of the mean RSS values; Random, in which the APs are ranked randomly; and the 
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proposed JointMMI, in which the subsets of APs are ranked in descending order of the joint 

mutual information gain. Two conclusions are drawn as follows: 

1. JointMMI chooses the optimal subset of APs. JointMMI jointly and intelligently 

measures and ranks the importance of AP subsets via the MMI criterion. A more accurate 

measurement is taken by JointMMI because it considers the correlation among APs. This fact 

is supported by Fig. 5. Compared with the other AP selection schemes, JointMMI has the best 

accuracy. The accuracy within 2 m of JointMMI is 74.0%, whereas those of InfoGain, 

MaxMean, and Random are 69.9%, 69.0%, and 69.0%, respectively. In addition, the accuracy 

of JointMMI monotonically increases and reaches the highest value at the fastest rate. The 

optimal number of APs used for JointMMI is only 13, smaller than the other schemes. Hence, 

JointMMI identifies the best combination of APs with the minimum number of APs.  

2. Initial AP selection by JointMMI improves the accuracy of LDE significantly. Compared 

with using the full APs, JointMMI for initial AP selection increases accuracy within 2 m from 

69.0% to 74.0%. JointMMI also identifies and discards noisy or redundant APs effectively. As 

shown in Fig. 5, the accuracy of LDE does not necessarily increase with more APs used. When 

the number of APs used is larger than 13, APs with little location information introduce 

significant noise, so that the accuracy decreases gradually. Hence, initial AP selection 

enhances the performance of LDE by avoiding introducing noise.  

 

 
Fig. 5. Accuracy within 2 m versus the number of APs for  

different AP selection schemes in cluster 1 

5.4 Feature Extraction Result 

This section first compares the best testing accuracy of four feature extraction methods: LDE, 

KDDA, LDA, and PCA in cluster 1. All these methods deploy the optimal AP subset chosen 

by JointMMI. The original RSS signal space using the optimal AP subset and WKNN is also 

compared. Fig. 6 shows the cumulative error distribution of different feature extraction 

methods with optimal feature dimensions. Accuracy of LDE within 2 m is 74.0%, whereas 

those of KDDA, LDA, PCA, and RSS are 75.3%, 63.5%, 59.4% and 57.0%, respectively. 

Accuracy of LDE within 3 m is 85.2%, whereas those of KDDA, LDA, PCA, and RSS are 

84.9%, 76.0%, 72.7%, and 70.7%, respectively. Thus, LDE obtains comparable accuracy with 

KDDA, while significantly improving accuracy compared with LDA, PCA, and RSS. 
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Fig. 6. Accuracy comparison among different feature extraction methods in cluster 1, with the optimal 

dimension 3d   in LDE, 6d   in KDDA, 5d   in LDA, 7d   in PCA, and 13d   in RSS space 

We further compare these feature extraction methods. RSS without feature extraction has the 

worst performance because considerable noise or redundancy are directly introduced, thus 

degrading accuracy. As shown in Fig. 6, PCA obtains little accuracy improvement compared 

with RSS because the most descriptive, rather than discriminative features, are extracted. In 

contrast, LDA performs better than PCA by extracting the features that best separate different 

locations. However, both PCA and LDA suffer from severe nonlinearity of RSS. They are 

both linear techniques and are incapable of extracting nonlinear features. In comparison, LDE 

is capable of capturing nonlinear features by considering RSS signal space as a manifold and 

preserving the locality geometry of the manifold. LDE explores neighbor relations and class 

information of RSS samples, thus enhancing the discrimination power of location features 

effectively. KDDA also extracts nonlinear features effectively by employing the kernel-based 

technique. However, KDDA requires excessive online computation cost, as will be shown in 

Section 5.5 and Table 1. Furthermore, without clustering analysis and AP selection, the 

accuracy of KDDA [17] (called KDDA-only) becomes significantly lower than that of the 

proposed LLDE-APS algorithm, as will be shown in Section 5.7. 

Finally, we study the effect of feature dimensions on the accuracy of different feature 

extraction methods. Each feature component corresponds to an eigenvalue, which indicates 

the information quantity obtained. For PCA, the eigenvalue is proportional to the feature 

variance that each component retains. for KDDA and LDA, the eigenvalue is proportional to 

the discriminative information quantity of each component, whereas for LDE, the eigenvalue 

is proportional to the ratio of the local between-class distance to the local within-class distance 

of neighbor samples. LDE further considers the local geometry of RSS signal space to adapt to 

the nonlinearity of RSS. As shown in Fig. 7, setting * 85%   in (10) for LDE, the 

cumulative percentage of the eigenvalues of the first three components already exceeds * , 

whereas KDDA, LDA, and PCA need to retain the first six, five, and seven components to 

exceed * . As a result, the optimal feature vector extracted by LDE not only has enhanced 

discrimination power, but also has the minimum dimension among the compared methods. 
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Fig. 7. Cumulative percentage of eigenvalues versus the dimension of location features in cluster 1 

 

5.5 Online Computation Cost Reduction 

As shown in Fig. 8, we compare the computation cost of LLDE-APS with the widely used 

WKNN, WKNN with clustering analysis (WKNN-CA), and WKNN-CA with AP selection 

(WKNN-CAAPS). We measure the computation cost by the average number of 

multiplications required for a single online positioning procedure. The computation cost over 

different clusters is not the same because the number of reference locations, the related 

optimal AP subset and LDE transformation are all different in each cluster.  

Fig. 8 shows the number of multiplications in each cluster and the total average number for 

the entire positioning region. Compared with WKNN, the other approaches reduce the 

computation cost via clustering analysis. WKNN computes the Euclidean distances between 

the real-time RSS sample vector and RSS sample vectors of all reference locations over the 

entire region, whereas the other approaches compute the distances over the cluster of 

significantly smaller size. In our experiments, the enire region was first divided into five 

clusters, where the numbers of reference locations are 16, 12, 9, 8, and 10 from C1 to C5, 

respectively. Hence, WKNN-CA decreases the number of multiplications from 1385 to 470, 

370, 295, 270, and 320, respectively. For WKNN-CAAPS, the computation cost is further 

reduced by discarding noisy APs. Rather than using all APs, the optimal number of APs 

selected is 13, 12, 14, 13 and 11 in each cluster, respectively. However, the proposed 

LLDE-APS requires the smallest computation cost. After feature extraction via LDE, the 

ultimate feature dimensions for each cluster are only 3, 3, 2, 2, and 3, respectively. As a result, 

LLDE-APS reduces the expected computation cost by 90.2%, 62.8%, and 37.5% against 

WKNN, WKNN-CA, and WKNN-CAAPS, respectively. 
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Fig. 8. Online computation cost comparison of LLDE-APS, WKNN, WKNN-CA, and WKNN-CAAPS 

In addition, we also compare the online computation cost among different feature extraction 

methods, as seen in Table 1. We denote the optimal feature dimension of LDE, KDDA, LDA, 

and PCA as 1d , 2d , 3d , and 4d , respectively. Despite the higher accuracy, KDDA requires 

considerably more computation cost than the other methods because all M  samples in the 

target region are involved. In contrast, LDE requires the smallest computation cost because it 

is linear and has the minimum optimal feature dimension. We take cluster 1 as an example, in 

which 13n  , 1 3d  , 2 6d  , 3 5d  , 4 7d  , and 1600M  . Hence, the number of 

multiplications for LDE, KDDA, LDA, and PCA are 39, 32000, 65 and 91, respectively. 

Table 1. Online computation cost comparison among different feature extraction methods 

Methods Multiplication/division Addition Exp 

LDE 1nd    11n d  0 

KDDA  2 1n d M    2 22 1n d M d    M  

LDA 3nd    31n d  0 

PCA 4nd    41n d  0 

 

5.6 Online Sensing Time Reduction 

In Section 4, we show that the third approach saves energy by reducing online sensing time. If 

we can achieve the same accuracy with a sensing time that is shorter than that of previous 

methods, more sleep time is allowed during online positioning, which significantly reduces 

energy consumption. In this section, we verify that the proposed LLDE-APS can achieve 

higher accuracy while requiring a shorter sensing time. 

Fig. 9 shows the accuracy within 2 m versus different online sensing time. We compare five 

methods: WKNN, ML, LDA, KDDA, and the proposed LLDE-APS. As shown in Fig. 9, 

using only 1 s sensing time (i.e., two real-time RSS samples), our method and KDDA already 

outperform the other methods using 5 s, indicating that we can save 4 s for each positioning 

procedure while achieving higher positioning accuracy. A smaller number of real-time 
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samples may degrade positioning accuracy because of the increased uncertainty of RSS. 

However, our method can tolerate the uncertainty of RSS to some extent. As shown in 

Sections 5.3 and 5.4, LLDE-APS achieves the high-level accuracy with a significantly shorter 

sensing time by discarding noisy APs and maximizing the separability of location features. 

 

Fig. 9. Accuracy within 2 m versus online sensing time of LLDE-APS, KDDA, LDA, ML, and WKNN 

5.7 Accuracy Comparison in Two Classic Environments 

To validate the accuracy of the proposed LLDE-APS, we performed the experiments in two 

classic environments. First is the office environment shown in Section 5.1 and Fig. 2, which 

includes hallways, walls, and rooms. Second is the open hall of our building. The main 

difference between the two classic environments is that, in the former, most of the RSS signals 

propagate in a non-line-of-sight way, whereas no obstructions exist between APs and the 

target region in the latter. In the open-hall environment, we deploy 12 APs within a size of 

20 m 16 m . We collect 6,300 training samples at 63 reference locations and 5,000 testing 

samples at 50 test points, with 100 samples per location.  

Table 2 and 3 compare positioning accuracy in the indoor office and open environments, 

respectively. All compared methods incorporate FCM and the proposed JointMMI, except for 

the KDDA-only method [17], which only deploys KDDA for feature extraction. The accuracy 

of WKNN is lowest because only the average RSS sample vectors at each reference location 

are explored. The accuracy of ANN is slightly higher than that of WKNN. In contrast, given 

ANN’s disadvantage of local optimization, a number of large, unexpected positioning errors 

may arise. Thus, the standard deviation of error of ANN is largest. ML performs better than 

ANN and WKNN through the use of statistical RSS information. Moreover, LDA further 

improves accuracy by extracting discriminative features. The KDDA-only method performs 

worse than the LDA and PCA methods because the monolithic model over the entire region is 

suboptimal, and noisy APs may degrade the accuracy. However, LLDE-APS and KDDA 

significantly improve accuracy in both environments, despite the different clustering analysis, 

AP selection, and feature extraction models used in the two environments. In particular, 

LLDE-APS reduces the mean positioning error and standard deviation of error by 21.9% and 

28.6% in the office environment while exhibiting 20.5% and 35.1% error improvement in the 

open environment, compared with WKNN and ML, respectively.  
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Table 2. Accuracy and positioning error (m) comparison in the indoor office environment 

Methods 
Mean 

error 

Standard 

deviation 

Accuracy within 2 

m 

Accuracy within 3 

m 

LLDE-APS 1.71 1.45 73.7% 84.9% 

KDDA 1.68 1.49 74.3% 84.7% 

KDDA-only 2.23 2.14 58.7% 72.4% 

WKNN  2.37 2.12 57.5% 71.3% 

ML 2.19 2.03 59.8% 74.2% 

ANN 2.34 2.42 58.3% 71.2% 

LDA 2.04 1.96 63.9% 76.5% 

PCA 2.21 2.08 59.6% 73.0% 

Table 3. Accuracy and and positioning error (m) comparison in the indoor open environment 

Methods 
Mean 

error 

Standard 

deviation 

Accuracy within 2 

m 

Accuracy within 3 

m 

LLDE-APS 1.67 1.35 74.3% 85.6% 

KDDA 1.63 1.40 75.8% 85.2% 

KDDA-only 2.21 2.15 59.7% 73.7% 

WKNN  2.26 2.14 59.2% 73.4% 

ML 2.10 2.08 61.6% 75.5% 

ANN 2.24 2.38 59.1% 73.8% 

LDA 1.98 1.95 64.7% 77.3% 

PCA 2.16 2.02 61.3% 74.4% 

6. Conclusion 

In this paper, we propose a novel method for improving Wi-Fi positioning accuracy while 

reducing energy consumption of mobile devices. The contributions of the proposed 

LLDE-APS method are threefold. First, we develop a joint AP selection scheme to select the 

optimal subset of APs. Considering the correlation of the discriminant abilities of the APs, we 

measure the importance of APs more accurately than previous AP selection schemes. 

Furthermore, we show that initial AP selection may enhance the performance of subsequent 

feature extraction because noisy APs with little location information are discarded. 

Second, we propose LDE for nonlinear discriminative feature extraction. Unlike previous 

linear feature extraction methods that cannot handle the nonlinearity of RSS, LDE adapts well 

to nonlinearity. Furthermore, the location features extracted by LDE have the strongest 

discrimination power and minimum feature dimension. Our previously proposed KDDA 

method obtains comparable accuracy with LDE. However, the online computation cost of 

LDE is considerably smaller than that of KDDA. As a result, our method not only improves 

accuracy significantly, but also reduces energy consumption greatly, owing to the much 

smaller computation cost and shorter sensing time required. 

Third, we employ the FCM clustering algorithm to localize the positioning model. In each 

sub-region, more compact RSS patterns are obtained. Thus, more suitable AP selection and 

feature extraction solutions are achieved. In addition, computation cost is also reduced due to 

the smaller number of reference locations.  

Experimental results in the classic office environment show that, compared with the WKNN 

and ML methods, LLDE-APS reduces the mean positioning error and standard deviation of 
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error by 21.9% and 28.6%, respectively, while reducing the computation cost by 90.2%. 

Furthermore, our method achieves higher accuracy than other methods while saving 80% 

sensing time (4 s) for a single positioning process. Experiments in an indoor open environment 

also demonstrate the effectiveness of the proposed LLDE-APS method. 
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