• Title/Summary/Keyword: linear search

Search Result 458, Processing Time 0.036 seconds

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

Optimal Weapon-Target Assignment of Multiple Dissimilar Closed-In Weapon Systems Using Mixed Integer Linear Programming (혼합정수선형계획법을 이용한 다수 이종 근접 방어 시스템의 최적 무장 할당)

  • Roh, Heekun;Oh, Young-Jae;Tahk, Min-Jea;Jung, Young-Ran
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.787-794
    • /
    • 2019
  • In this paper, a Mixed Integer Linear Programming(MILP) approach for solving optimal Weapon-Target Assignment(WTA) problem of multiple dissimilar Closed-In Weapon Systems (CIWS) is proposed. Generally, WTA problems are formulated in nonlinear mixed integer optimization form, which often requires impractical exhaustive search to optimize. However, transforming the problem into a structured MILP problem enables global optimization with an acceptable computational load. The problem of interest considers defense against several threats approaching the asset from various directions, with different time of arrival. Moreover, we consider multiple dissimilar CIWSs defending the asset. We derive a MILP form of the given nonlinear WTA problem. The formulated MILP problem is implemented with a commercial optimizer, and the optimization result is proposed.

Image Compression by Linear and Nonlinear Transformation of Computed Tomography (전산화단층촬영의 선형과 비선형변환에 의한 영상압축)

  • Park, Jae-Hong;Yoo, Ju-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.509-516
    • /
    • 2019
  • In the linear transformation method, the original image is divided into a plurality of range blocks, and a partial transform system for finding an optimal domain block existing in the image for each range block is used to adjust the performance of the compression ratio and the picture quality, The nonlinear transformation method uses only the rotation transformation among eight shuffle transforms. Since the search is performed only in the limited domain block, the coding time is faster than the linear transformation method of searching the domain block for any block in the image, Since the optimal domain block for the range block can not be selected in the image, the performance may be lower than other methods. Therefore, the nonlinear transformation method improves the performance by increasing the approximation degree of the brightness coefficient conversion instead of selecting the optimal domain block, The smaller the size of the block, the higher the PSNR value, The higher the compression ratio is increased groups were quadtree block divided to encode the image at best.

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

An Extension of Unified Bayesian Tikhonov Regularization Method and Application to Image Restoration (통합 베이즈 티코노프 정규화 방법의 확장과 영상복원에 대한 응용)

  • Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.161-166
    • /
    • 2020
  • This paper suggests an extension of the unified Bayesian Tikhonov regularization method. The unified method establishes the relationship between Tikhonov regularization parameter and Bayesian hyper-parameters, and presents a formula for obtaining the regularization parameter using the maximum posterior probability and the evidence framework. When the dimension of the data matrix is m by n (m >= n), we derive that the total misfit has the range of m ± n instead of m. Thus the search range is extended from one to 2n + 1 integer points. Golden section search rather than linear one is applied to reduce the time. A new benchmark for optimizing relative error and new model selection criteria to target it are suggested. The experimental results show the effectiveness of the proposed method in the image restoration problem.

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

Influence of picture presence in reviews on online seller product rating: Moderation role approach

  • Hossin, Md Altab;Mu, Yinping;Fang, Jiaming;Frimpong, Adasa Nkrumah Kofi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6097-6120
    • /
    • 2019
  • Online consumer reviews (OCRs) provide product information and recommendations especially pictures in reviews depict the true information about the product. This study investigates the influence of pictured reviews on online seller (for a particular product of a seller) rating with moderating effect of price, brand type (foreign vs local), goods type (experience vs search), and brand familiarity. Multiple robust linear regression analysis with moderation interaction and quadratic effect used to explain the relationship of the explanatory variables with the criterion variable. We collected cross-sectional data from the two most renowned Chinese online shopping platforms (B2C) of total 15,621 product links. Results show that higher number of reviews with a low ratio of picture reviews response negative effect on rating, whereas the lower number of reviews with a high ratio of picture reviews response positive effect on the rating. In overall picture in the reviews improve the online seller product rating. For the moderation effect, results show that price and brand familiarity have a positive interaction effect on the relation of pictured reviews and rating whereas experience goods have less negative effect comparing search goods. Finally, local brand has less negative interaction effect comparing foreign brand to pictured reviews and rating.

An Image Segmentation Algorithm using the Shape Space Model (모양공간 모델을 이용한 영상분할 알고리즘)

  • 김대희;안충현;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.41-50
    • /
    • 2004
  • Since the MPEG-4 visual standard enables content-based functionalities, it is necessary to extract video objects from video sequences. Segmentation algorithms can largely be classified into two different categories: automatic segmentation and user-assisted segmentation. In this paper, we propose a new user-assisted image segmentation method based on the active contour. If we define a shape space as a set of all possible variations from the initial curve and we assume that the shape space is linear, it can be decomposed into the column space and the left null space of the shape matrix. In the proposed method, the shape space vector in the column space describes changes from the initial curve to the imaginary feature curve, and a dynamic graph search algorithm describes the detailed shape of the object in the left null space. Since we employ the shape matrix and the SUSAN operator to outline object boundaries, the proposed algorithm can ignore unwanted feature points generated by low-level image processing operations and is, therefore, applicable to images of complex background. We can also compensate for limitations of the shape matrix with a dynamic graph search algorithm.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.