
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO.  4, August 2010                                            575 
Copyright ⓒ 2010 KSII 

 
DOI: 10.3837/tiis.2010.08.008 

Identification of Fuzzy Inference System 
Based on Information Granulation 

Wei Huang1, Lixin Ding1, Sung-Kwun Oh2, Chang-Won Jeong3 and Su-Chong Joo3  
1 State Key Laboratory of Software Engineering, Wuhan University, China 

[e-mail: huangwabc@163.com] 
2 Department of Electrical Engineering, University of Suwon, South Korea 

[e-mail: ohsk@suwon.ac.kr] 
3 Department of Computer Engineering, Wonkwang University, South Korea 

 [e-mail: {mediblue, scjoo}@wku.ac.uk] 
*Corresponding author: Sung-Kwun Oh 

 
Received April 19, 2010; revised June 7, 2010; accepted June 28, 2010; 

published August 27, 2010 

 

 
Abstract 

 
In this study, we propose a space search algorithm (SSA) and then introduce a hybrid 
optimization of fuzzy inference systems based on SSA and information granulation (IG). In 
comparison with “conventional” evolutionary algorithms (such as PSO), SSA leads no.t only 
to better search performance to find global optimization but is also more computationally 
effective when dealing with the optimization of the fuzzy models. In the hybrid optimization 
of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the 
fuzzy model as well as to realize its structural optimization. IG realized with the aid of 
C-Means clustering helps determine the initial values of the apex parameters of the 
membership function of fuzzy model. The overall hybrid identification of fuzzy inference 
systems comes in the form of two optimization mechanisms: structure identification (such as 
the number of input variables to be used, a specific subset of input variables, the number of 
membership functions, and polyno.mial type) and parameter identification (viz. the apexes of 
membership function). The structure identification is developed by SSA and C-Means while 
the parameter estimation is realized via SSA and a standard least square method. The 
evaluation of the performance of the proposed model was carried out by using four 
representative numerical examples such as No.n-linear function, gas furnace, NO.x emission 
process data, and Mackey-Glass time series. A comparative study of SSA and PSO 
demonstrates that SSA leads to improved performance both in terms of the quality of the 
model and the computing time required. The proposed model is also contrasted with the 
quality of some “conventional” fuzzy models already encountered in the literature. 
 
 
Keywords: Space search algorithm (SSA), particle swarm algorithm (PSO), information 
granulation (IG), fuzzy inference system (FIS)  
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1. Introduction 

In recent years, fuzzy modeling has been utilized in many fields for engineering, medical 
engineering, and even social science [1]. As for fuzzy model construction, identification of 
fuzzy rules is one of most important parts in the design of rule-based fuzzy modeling. 

Many identification methods for fuzzy models have been studied over the past decades. In 
the early 1980s, linguistic modeling[2] was proposed as primordial identification methods for 
fuzzy models. Then Tong et.al [3], C.W.Xu et.al [4] studied differnet approaches for fuzzy 
models. While appealing with respect to the basic topology (a modular fuzzy model composed 
of a series of rules) [5], these models still await formal solutions as far as the structural 
optimization of the model is concerned, say a construction of the underlying fuzzy sets – 
information granules being viewed as basic building blocks of any fuzzy model. Oh and 
Pedrycz [6] have proposed some enhancements to the model, yet the problem of finding 
“good” initial parameters of the fuzzy set in the rules remains open. To solve this problem, 
several genetically identification methods for fuzzy models have been proposed. Liu et.al [7] , 
Chung and Kim [8] and others have discussed employing genetic algorithms to fuzzy models, 
respectively. In a word, evolutionary identification methods have proven to be useful in 
optimization of such problems. 

In this study, we propose a space search algorithm (SSA) and then introduce a hybrid 
optimization of fuzzy inference systems based on SSA and information granulation (IG). SSA 
is exploited here to carry out the parameter estimation of the fuzzy models as well as to realize 
structural optimization. The identification process is comprised of two phases, namely a 
structural optimization (the number of input variables to be used, a specific subset of input 
variables, and the number of membership functions) and parametric optimization (apexes of 
membership function). The SSA and the least square method (LSE) are used in each phase of 
this sequence. Information granulation is realized with the aid of HCM, SSA and LSM. HCM 
is used to help determine the initial parameters of the fuzzy model such as the initial location 
of apexes of the membership functions and the prototypes of the polyno.mial functions being 
used in the premise and consequence parts of the fuzzy rules, while SSA and LSM is employed 
to adjust the initial values of the parameters. To evalutate the performance of the proposed 
model, we exploit two kinds of well-kno.wn data set. A hybrid optimization of fuzzy inference 
systems based on PSO and IG is also implemented for the comparative study. 

2. IG-based Fuzzy Model 

Granulation of information is an inherent and omnipresent activity of human beings carried 
out with intent of gaining a better insight into a problem under consideration and arriving at its 
efficient solution. In particular, granulation of information is aimed at trasforming the problem 
at hand into serveral smaller and therefore more manageable tasks. The identification of the 
conclusion parts of the rules deals with a selection of their structure (type 1, type 2, type 3 and 
type 4) that is followed by the determination of the respective parameters of the local functions 
occurring there. The conclusion part of the rule that is extended form of a typical fuzzy rule in 
the TSK (Takagi-Sugeno.-Kang) fuzzy model has the form. 

1 1 1: ( , , )j
c k kc j j j kR If x is A and and x is A then y M f x x      (1)
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Type 1 (Simplified Inference): 0j jf a  

Type 2 (Linear Inference): 0 1 1 1( ) ( )j j j j jk k jkf a a x V a x V       

Type 3 (Quadratic Inference): 
2 2

0 1 1 1 ( 1) 1 1 (2 )( ) ( ) ( ) ( )j j j j jk k kj j k j j k k kjf a a x V a x V a x V a x V             

(2 1) 1 1 2 2 (( 2)( 1) / 2) 1 ( 1)( )( ) ( )( )j k j j j k k k k j k kja x V x V a x V x V            

Type 4 (Modified Quadratic Inference): 
0 1 1 1 ( 1) 1 1 2 2( ) ( ) ( )( )j j j j jk k kj j k j jf a a x V a x V a x V x V            

( ( 1) / 2) 1 ( 1)( )( )j k k k k j k kja x V x V      

The calculations of the numeric output of the model, based on the activation (matching) 
levels of the rules there, rely on the following expression.       

1
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Here, as the no.rmalized value of wji , we use an abbreviated no.tation to describe an 
activation level of rule  jR to be in the form 
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(3)

where jR  is the j-th fuzzy rule, xk represents the input variables, Akc is a membership function 
of fuzzy sets, ajk is a constant, Vjk and Mj is a center value of the input and output data, 
respectively, n is the number of fuzzy rules, y* is the inferred output value, wji is the premise 
fitness matching jR  (activation level).  

We use two performance indexes as the standard root mean squared error (RMSE) and 
mean squared error (MSE)   
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 (4)

where y* is the output of the fuzzy model, m is the total number of data, and i is the data 
number.  
The consequence parameters ajk can be determined by the standard least-squares method 

that leads to the expression 

-1ˆ ( )T Ta X X X Y  (5)

In the case of Type 2 we have  

10 0 11 1 1ˆ [ ]Tn n k nka a a a a a    a , 1 2[ ]Ti m  X x x x x , 



578                       Huang et al.: Identification of Fuzzy Inference System Based on Information Granulation (IG) 

T
i x [ 1ˆ iw  ˆniw  1 11 1ˆ( )i ix V w  1 1 ˆ( )i n nix V w  1 1ˆ( )ki k ix V w  ˆ( )ki kn nix V w ] 
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3. Optimization 

Generally, Particle Swarm Optimization is utilized as a useful optimization vehicle to deal 
with the optimization problem. PSO is an example of a modern search heuristics belonging to 
the category of Swarm Intelligence methods. PSO involves two competing search strategy 
aspects [9]. One deals with a social facet of the search; according to this, individuals igno.re 
their own experience and adjust their behavior according to the successful beliefs of 
individuals occurring in their neighborhood. The cognition aspect of the search underlines the 
importance of the individual experience where the element of population is focused on its own 
history of performance and makes adjustments accordingly. Unlike many other heuristic 
techniques, PSO has a flexible and well-balanced mechanism to enhance the global and local 
exploration abilities. However, PSO is lack of adequate investigations on the solution space 
being explored. In this section, we proposed the space search algorithm which is a new 
optimizaiton vehicle. 

3.1 Space Search Algorithm 

SSA is a heuristic algorithm whose search method comes with the analysis of the solution 
space. In essence, the solution space is the set of all feasible solutions for the optimization 
problem (or mathematical programming problem), which is stated as the problem of 
determining the best solution coming from the solution space. To illustrate the idea of the SSA, 
let us consider why an evolutionary algorithm (such as the well-kno.wn genetic algorithm) can 
find the optimal solution. In fact, a precondition should be satisfied when evolutionary 
algorithm can find the optimal solution. The precondition is that, in most of local areas, a point 
(solution) and the other points located in the point’s adjacent space have the similar values of 
the objective function (fitness values). In other words, in most of local areas, a solution with 
better fitness is closer to the optimal solution. Based on this observation, we may give rise to a 
space search mechanism to update the current solutions. The role of space search is to generate 
new solutions from old ones. The search method is based on the operator of space search, 
which generates two basic steps: generate new subspace (local area) and search the new space. 
Search in the new space is realized by randomly generating a new solution (individual) located 
in this space. Regarding the generation of the new space, we consider two cases: (a) space 
search based on M selected solutions (deno.ted here as Case I), and (b) space search based on 
one selected solution (Case II).  

In Case I, the new subspace (local area) is generated by M selected solutions (individuals). 
For convenience, a solution X  can be presented in anther way 1 2( , ,......, )nX x x x , where 

n  is the index of the dimension. Regarding the M  solutions, we use the following 

representations: 
1 2( , ,......, )

n

k k k kX x x x , 1, 2,......,k M . We generate the new space V  

based on the following expression:  
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1 1

{ , 1, 1 2}
M M

new new k new
i i i i i

k i

V X x a x X S where a a
 

              (6)

Here newX  is a new feasible solution randomly generated on a basis of V ,

1 2( , ,......, )
n

new new new newX x x x . S is the entire feasible solution space. The coefficients ia  are 

used to adjust the size of the search space. Fig.1 depicts the search space V  when n=2. As 
shown in Fig.1, the search space V is equal to S1 when 0 1ia  . S2 is the search space of V 

in the case of [ , ]ia l u , where 0,l   and 1.u   In this study, we search the adjacent space 

S2 and set 1 2ia   . 

 

 
Fig. 1. Comparison of search space V with different parameters 

 
In Case II, the space search operation is based on a given solution. In this case, the given 

solution is the best solution in the current solution set (population). The role of this operator is 
to adjust the best solution by searching its adjacent space. In the SSA, we generate the new 
space 1V  based on the following expression: 
 

1 1 2{( , ,......, ) | ( ) [ , ]}new new new new new
n j j i i iV x x x x x j i x l u        (7)

 

where the value of new
ix  is the same as ix  which is range from il  to iu . 

Assume a function  

, ,
( , )

, .

true if x has better fitness or equal than y
better x y

false if x has worse fitness than y


 


     (8)

 

where both x  and  y are the feasible solutions in the solution space. The overall algorithm 
can be outlined as the following sequence of steps. 

Step 1. Initialize (randomly generate) solution set 1 2( , ,......, )mP X X X , where 
iX S . 
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Step 2. Evaluate each solution iX , where 1,2,......,i m . 

Step 3. Find the best solution bestx  and the worst solution worstx  in the current solution 

set. 
Step 4. If ( , )worst bestbetter x x true , goto step 13. 

Step 5. Randomly select M  numbers solutions from P . 
Step 6. Generate a new subspace V  according to the M  solutions (Case I). 
Step 7. Generate a new solution newx  from the new subspace V . 

Step 8. Update the current best and worst solutions in the following two cases: (a) if 
( , )new worstbetter x x true , set worst newx x ; and (b) if 

( , )new bestbetter x x true , set best newx x . 

Step 9. Generate new subspaces 1V  based on the current best solution bestx  (Case II). 

Step 10. Generate a new solution 1newx  from the subspace 1V . 

Step 11. Update the current best and worst solutions in the following two cases: (a) if 

1( , )new worstbetter x x true , set 1worst newx x ; and (b) if 

1( , )new bestbetter x x true , set 1best newx x . 

Step 12. Repeat steps 4-11. 
Step 13. Report the optimal solution bestx . 

The features of the SSA are highlighted as follows. 
(a) The SSA leads to better performance when finding global optimization than PSO, 

especially in the optimization problems with larger solution spaces. The SSA 
searches the same size of solution space as PSO. However, the SSA searches the 
solutions based on the relative adequate analyzing space while PSO searches the 
solutions without such adequate analyzing space. 

(b) The SSA leads to shorter computing time when being compared with the conventional 
PSO. Each solution is updated in PSO while SSA generates only two new solutions in 
each generation. That is in one generation, individuals which correspond to lots of 
new solutions are evaluated in PSO while only two new solutions (individual) are 
evaluated in the SSA. This operation procedure enables us to carry out the rapid CPU 
operation for hybrid identification of fuzzy systems. 

3.2 Hybrid Optimization of Fuzzy Inference Systems 

The standard gradient-based optimization techniques might no.t be effective in the context of 
rule based systems given their no.nlinear character (in particular the form of the membership 
functions) and modularity of the systems. This suggests us to explore other optimization 
techniques. When running the optimization method, we distinguish between two main 
categories of adjustment such as the sequential [10] and successive tuning [11]. In the 
sequential tuning, the structural and the parametric optimization are carried out sequentially. 
First, the structural optimization is completed and then we proceed with the parametric phase. 
The structural optimization of the fuzzy model is carried out assuming that the apexes of the 
membership functions are kept fixed. The fixed apexes of the membership functions are taken 
as the center values produced by the C-Means algorithm, while the parametric optimization is 
applied to the fuzzy model derived through the structural optimization.In other words, first 
when the fixed apexes of the membership functions corresponding to the center values of the 
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clusters obtained by the C-Means method are provided, the structural optimization takes into 
consideration the change of the parameters such as the number of the membership functions, 
the number of inputs, polyno.mial order, and a collection of specific subset of input variables. 
Next the parametric optimization is carried out to fine-tune the apexes of the membership 
functions.  

1 2 3 4 5 6x x x x x x
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Fig. 2. Arrangement of solutions for the optimization of fuzzy model 

 
Fig. 2 depicts the arrangement of solutions in the SSA-based sequential tuning method. The 

first part for structural optimization are separated from the second part used for parametric 
optimization. The size of the solutions for structural optimization of the IG-based fuzzy model 
is determined according to the number of all input variables of the system. The size of the 
solutions for parametric optimization depends on structurally optimized fuzzy inference 
system. In a nutshell, from the viewpoint of structure identification, only one fixed parameter 
set, which is the assigned apexes of membership functions obtained by C-Means clustering, is 
considered to carry out the overall structural optimization of fuzzy model. From the viewpoint 
of parameter identification, only one structurally optimized model that is obtained during the 
structure identification is considered to be involved in the overall parametric optimization. In 
order to construct the optimized IG-based fuzzy model, the range of search space for the 
structural as well as the parametric optimization is strictly restricted in the sequential tuning 
method.  
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Fig. 3. Arrangement of solutions in successive tuning 

To alleviate this problem, we present the SSA-based successive tuning method. In this 
method, we simultaneously realize the structural as well as parametric optimization of the 
model. Fig. 3 shows the arrangement of solutions used for the successive tuning method. The 
second part for parametric identification are linked up with the first part for structure 
identification within a solution (an individual). The size and arrangement of the first part for 
structure identification is the same as those in the sequential tuning method, while the size of 
the second part for parameter identification is determined by considering both the number of 
the system’s input variables and the number of the membership functions being used in their 
representation. In the successive tuning method, a stochastic variable (a variant identification 
ratio) used within a modified simple search space operator in the SSA is used support an 
efficient successive tuning embracing both the structural as well as parametric optimization of 
the model. During the initial generations of the SSA, the space search operator is assigned with 
higher probability to the solution region involving the first part responsible for structural 
optimization. This probability becomes lower when dealing with a region of the solution 
involving the second part responsible for parametric optimization. In this manner, the 
optimization becomes mostly focused on the structural optimization. Over the course of the 
space search optimization (for higher generations), the probability that the first part can be 
generated (assigned) within the second part responsible for parameter optimization gradually 
increases. In this sense, the optimization of the IG-based fuzzy set model becomes 
predominantly focused on the parametric optimization.  

In the sequential tuning method, in the first step, the “topology (structure)-only search with 
fixed parameter” is carried out for optimization. In the next step, the “parameter-only search 
with fixed topology (structure)” is carried out for optimization. While in the successive tuning 
method, the second part related to the parameter optimization of model are serially connected 
with the first part related to the structural optimization of model. Therefore the “simultaneous 
topology/parameter search” is carried out for optimization, and the successive tuning method 
enables us to consider much more extensive topology/parameter search space for optimization 
when compared with the sequential tuning method.  

The space search operator in the SSA algorithm for the successive tuning method being 
realized with the aid of a variant identification ratio is implemented. Its essential parameters 
such as gen, maxgen, and  are given. Here, gen is an index of the current generation, maxgen 
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stands for the maximal number of generations being used in the algorithm, and  serves as 
some adjustment coefficient whose values can determine a variant identification ratio (p) for 
both structural and parametric optimization. 

The detailed space search operator in the SSA algorithm is presented as follows: 
 
While { the termination conditions are no.t met } 

Select M solutions (parent individuals) from the current solution set, where M is a given 
number.  

Generate random variable (r1). 
Calculate a variant identification ratio (p) which is a generation-based stochastic 

variable of the form 
1 (1 / max )r gen gen

p


 
   

IF {p > 0.5} 
Search solution space within the first part of solutions for structural optimization. 

Else 
Search solution space within the second part of solutions for parametric optimization.

End IF 
Complete the space search operation. 

End while 
 
The objective function (performance index) is a basic mechanism guiding the evolutionary 

search carried out in the solution space. The objective function includes both the training data 
and testing data and comes as a convex combination of the two components. 

( , _ ) (1 ) _f PI E PI PI E PI          (9)

Here, PI and E_PI deno.te the performance index for the training data and testing 
(validation) data, respectively.   is a weighting factor that allows us to form a sound balance 
between the performance of the model for the training and testing data. Depending upon the 
values of the weighting factor, several specific cases of the objective function are worth 
distinguishing.  

i. If 1    then the model is optimized based on the training data. No. testing data is taken 
into consideration. 

ii. If 0.5    then both the training and testing data are taken into account. Moreover it is 
assumed that they exhibit the same impact on the performance of the model. 

iii. The case     where  [0, 1]   embraces both the cases stated above. The choice of   
 establishes a certain tradeoff between the approximation and generalization aspects 
of the fuzzy model.   

4. Experimental Studies 

This section includes comprehensive numeric studies illustrating the design of the fuzzy 
model. We use some well-kno.wn data sets. PI deno.tes the performance index for training 
data and E_PI for testing data. The weighting factor   = 0.5 is taken into consideration. The 
numeric values of the parameters of the PSO were either predetermined or selected 
experimentally. More specifically, we used the following values of the parameters: maximum 
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number of generations is 150; maximal velocity, vmax, is 20% of the range of the corresponding 
variables; w=0.4 and acceleration constants c1 and c2 are set to 2.0. The maximal velocity was 
set to 0.2 for the search carried out in the range of the unit interval [0,1]. The algorithm 
terminates after running 1000 generations. The parameters of SSA are as follows. We use 150 
generations and a size of 100 populations (individuals) for structure identification and run the 
method for 1,000 generations. The population size is 60 for parameter identification. In each 
generation, we first search the space based on 8 solutions generated randomly and then search 
the space based on the best solution. In the simultaneous tuning method, the  is set as 2.0. 

4.1 No.n-linear function 

The three-input no.nlinear function is given as 
0.5 1 1.5 2
1 2 3(1 )y x x x                                                          (10) 

It is widely used to evaluate performance of various fuzzy models [12][13][14][15]. In this 
experiment, the data set is partitioned into two and three separate data sets, respectively. We 
use MSE defined by Eq.(4) as the performance index. The first 50% of data set (consisting of 
20 pairs) is used for the design of the fuzzy model. The remaining 50% data set (consisting of 
20 pairs) helps quantify the predictive quality of the model.  

 

 
(a) Identification error in successive generations 

 

 
(b) CPU time in successive generations 

Fig. 4. Comparison of PSO with SSA (No.n-linear function). 
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Fig. 4 shows the optimization process of fuzzy model with eight fuzzy rules when running 
SSA and PSO, respectively. SSA and PSO exhibit the same identification error (performance 
index) in structural optimization, but SSA comes with the lower error than the one produced 
by the PSO in parametric optimization; see Fig. 4(a). Moreover, Fig. 4(b) shows that SSA 
uses less CPU time than PSO in each optimization phase.  

Fig. 5 shows the resulting values of the performance index when running the sequential 
tuning and the simultaneous tuning identification based on the SSA. Table 1 supports a 
comparative analysis considering some existing models; it is evident that the proposed model 
compares favorably both in terms of accuracy and prediction capabilities. No.tice that we 
compare with different types of model such as FNNs and GMDH, because there no. previous 
fuzzy model for three-input no.nlinear data. 
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(a) Trace of PI 
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(b) Trace of EPI 

Fig. 5. Trace curves of the performance indexes for the sequential tuning and the simultaneous tuning 
based on the SSA (No.n-linear function). 

 

Table 1. Comparison of identification errors for selected fuzzy models (No.n-linear function) 
Model  PI E_PI No. of rules 

Shinichi's model [12] Type 1 0.84 1.22  
 Type 2 0.73 1.28  

Sugeno.'s model [13] Model I 1.5 2.1  
 Model II 1.1 3.6  
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Linear model [14]  12.7 11.1  
GMDH [14]  4.7 5.7  

Single-FNN [15]  2.670 3.063  
Oh et al.'s model [15]  0.174 0.689  
HFC-PGA model [11]  0.000835 0.1564 8 

Our model 
PSO+IG  0.000837 0.1590 8 

SSA+IG 
Sequential tuning  0.000835 0.1564 8 

Simultaneous tuning  0.000835 0.1564 8 

4.2 Gas furnace process 

The second well-kno.wn dataset is time series data of a gas furnace utilized by Box and 
Jenkins [2][3][4][5][6][10]. The time series data is comprised of 296 input-output pairs 
resulting from the gas furnace process has been intensively studied in the previous literature. 
The delayed terms of methane gas flow rate ( )u t and carbon dioxide density ( )y t  are used as 
six input variables with vector formats such as  
[ ( 3), ( 2), ( 1), ( 3), ( 2), ( 1)].u t u t u t y t y t y t      ( )y t  is used as output variable. The 
first 148 pairs are used as the training data while the remaining 148 pairs are the testing data 
set for assessing the predictive performance. MSE is considered as a performance index. Fig. 6 
depicts the optimization process in SSA and PSO for the fuzzy model with six fuzzy rules. It 
shows that SSA has less identification error, less CPU time and rapid convergence in 
comparison with PSO. 

 
(a) Identification error in successive generations 

 

 
(b) CPU time in successive generations 

Fig. 6. Comparison of PSO with SSA (Gas). 
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Fig. 7 shows the resulting values of the performance index when running the sequential 
tuning and the simultaneous tuning identification based on the SSA. The identification error of 
the proposed model is compared with the performance of some other models; refer to Table 2. 
It is easy to see that the proposed model outperforms several previous fuzzy models kno.wn in 
the literature. 
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(b) Trace of EPI 

Fig. 7. Trace curves of the performance indexes for the sequential tuning and the simultaneous tuning 
based on the SSA (GAS). 

 
Table 2. Comparative analysis of selected models (GAS) 

Model PIt PI E_PI No. of rules 
Pedrycz's model [2] 0.776   20 

Tong's model [3] 0.469   19 
Xu's model [4] 0.328   25 

Sugeno.'s model [5] 0.355   6 

Oh et al.'s
Model [6]

Simplified  0.024 0.328 4 

Linear 
 0.022 0.326 4 
 0.021 0.364 6 

HCM+GA
[10] 

Simplified 
 0.035 0.289 4 
 0.022 0.333 6 

Linear 
 0.026 0.272 4 
 0.020 0.264 6 

HFC-PGA model [11]  0.015 0.260 6 
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Our model

PSO+IG 
 0.019 0.284 4 
 0.015 0.273 6 

SSA+IG 
Sequential tuning 

 0.017 0.266 4 
 0.015 0.260 6 

Simultaneous tuning
 0.016 0.266 4 
 0.015 0.258 6 

4.3 NO.x emission process data of gas turbine power plant 

NO.x emission process is also modeled using the data of gas turbine power plants. A NO.x 
emission process of a GE gas turbine power plant located in Virginia, USA, is chosen in this 
experiment. The input variables include AT (ambient temperature a site), CS (compressor 
speed), LPTS (low pressure turbine speed), CDP (compressor discharge pressure), and TET 
(turbine exhaust temperature). The output variable is NO.x. We consider 260 pairs of the 
original input-output data. 130 out of 260 pairs of input-output data is used as the learning set; 
the remaining part serves as a testing set. The performance index is MSE defined by Eq.(4).    

Fig. 8 depicts the optimization process realized by the SSA and GA. When compared with 
GA, the superiority of both performance index and CPU time are clearly visible.  
 

 
(a) Identification error in successive generations 

 

 
(b) CPU time in successive generations 

Fig. 8. Comparison of PSO with SSA (NO.x). 
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Fig. 9 includes the values of the performance index obtained in simultaneous iterations 
when running the sequential and simultaneous tuning method. The proposed model is also 
contrasted with some previously developed fuzzy models as shown in Table 3. It is easy to see 
that the performance of the proposed model is better in the sense of its approximation and 
prediction abilities. 
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(b) Trace of EPI 

Fig. 9. Trace curves of the performance indexes for the sequential tuning and the simultaneous tuning 
based on the SSA (NO.x). 

 

Table 3. Comparative analysis of selected models (NO.x) 
Model PI E_PI No. of rules 

Regression model 17.68 19.23  
Hybrid FS-FNNs [16] 2.806 5.164  
Hybrid FR-FNNs [17] 0.080 0.190  

Multi-FNN[18] 0.720 2.205  
Hybrid rule-based FNNs[19] 3.725 5.291  

SOFPNN [20] 0.012 0.094  
Choi’s model [21] 0.012 0.067 18 

HFC-PGA model [11] 0.006 0.027 16 
Our model PSO+IG 0.035 0.297 16 
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SSA+IG 
Sequential tuning 0.0179 0.0845 16 

Simultaneous tuning 0.0038 0.0187 16 

4.4 Chaotic Mackey-Glass time series 

A chaotic time series is generated by the chaotic Mackey–Glass differential delay equation 
[22][23][24][24][25][26][27] of the form: 

10

0.2 ( )
( ) 0.1 ( )

1 ( )

x t
x t x t

x t




 
 

 
 

The prediction of future values of this series arises is a benchmark problem that has been 
used and reported by a number of researchers. From the Mackey–Glass time series x(t), we 
extracted 1000 input–output data pairs for the type from the following the type of vector 
format such as: [x(t-30), x(t-24), x(t-18), x(t-12), x(t-6), x(t); x(t +6)] where t = 118–1117. The 
first 500 pairs were used as the training data set for IG-based FIS while the remaining 500 
pairs were the testing data set for assessing the predictive performance. To come up with a 
quantitative evaluation of the fuzzy model, we use the standard RMSE performance index as 
like Eq. (4).  

 

 
(a) Identification error in successive generations 

 

 
(b) CPU time in successive generations 

Fig. 10. Comparison of PSO with SSA (Mackey). 
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(b) Trace of EPI 

Fig. 11. Trace curves of the performance indexes for the sequential tuning and the simultaneous tuning 
based on the SSA (Mackey). 

 

Fig. 10 depicts the optimization process of fuzzy model with sixteen fuzzy rules when 
running SSA and PSO, respectively. It shows that SSA has better performance index, less 
CPU time and rapid convergence in comparison with PSO. The values of the performance 
index obtained in simultaneous iterations when running the sequential and simultaneous 
tuning method are presented in Fig. 11 and Table 4 summarizes the results of comparative 
analysis of the proposed model with respect to other constructs. Here PIt deno.tes the 
performance index for total process data, the no.n-dimensional error index (NDEI) is defined 
as the RMSE divided by the standard deviation of the target series. 
 

Table. 4 Comparative analysis of selected models (Mackey) 
Model PIt PI E_PI NDEI No. of rules

Support vector regression model [22]  0.023 1.028 0.0246  
Multivariate adaptive regression splines [22]  0.019 0.316 0.0389  

Standard neural networks  0.018 0.411 0.0705 15 no.des 
RBF neural networks  0.015 0.313 0.0172 15 no.des 

Wang’s model[23] 0.004    7 
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0.013    23 
ANFIS [24]  0.0016 0.0015 0.007 16 

FNN model[25]  0.014 0.009   
Incremental type multilevel FRS[26]  0.0240 0.0253  25 
Aggregated type multilevel FRS[26]  0.0267 0.0256  36 

Hierarchical TS-FS[27]  0.0120 0.0129  28 
HFC-PGA model [11]  0.00013 0.00017 0.0015 16 

Our model 
PSO+IG  0.00033 0.00035 0.0057 16 

SSA+IG  
Sequential Tuning  0.00012 0.00015 0.0013 16 

Simultaneous tuning  0.00011 0.00014 0.0007 16 

5. Concluding Remarks 

This paper contributes to the research area of the hybrid optimization of fuzzy inference 
systems in the following two important aspects: 1) we proposed a space search evolutionary. 
From the perspective of the size of the solution space, SSA exhibits better performance in 
finding global optimization and less CPU time than the ”conventional” PSO. 2) we introduced 
the hybrid optimization of fuzzy inference systems based on the SSA and information 
granulation. It is shown that the coding scheme introduced here leads to chromosomes which 
help decrease the number of unfeasible solutions arising in the process of evolutionary 
computing. Numerical experiments using four well-kno.wn data set show that the model 
constructed with the aid of the SSA exhibits better performance in comparison with the 
PSO-constructed fuzzy model. 
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