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An Extension of Unified Bayesian Tikhonov Regularization Method
and Application to Image Restoration
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ABSTRACT

This paper suggests an extension of the unified Bayesian Tikhonov regularization method. The unified method
establishes the relationship between Tikhonov regularization parameter and Bayesian hyper-parameters, and presents a
formula for obtaining the regularization parameter using the maximum posterior probability and the evidence framework.
When the dimension of the data matrix is m by n (m >= n), we derive that the total misfit has the range of m * n
instead of m. Thus the search range is extended from one to 2n + 1 integer points. Golden section search rather than
linear one is applied to reduce the time. A new benchmark for optimizing relative error and new model selection criteria
to target it are suggested. The experimental results show the effectiveness of the proposed method in the image
restoration problem.
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| . Introduction problems in the ill-posed systems[1-2]. Image
restoration is the process to recover an original
Image restoration is an example of inversion image from distorted one by using an appropriate
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degradation model[3-4]. In the linear degradation
model, we assume that a given input image f is
blurred by a Point Spread Function(: PSF) h and
further distorted by a Gaussian noise 7. This can
be written in the form

g(z.y) = h(z,y) * fla,y) +nlz,y) 1)

where symbol * denotes convolution.
In the Fourier transform, we have

Glu,v) = H(u,v) Flu,v) + Nu,v). (2)

In the inverse filtering, we have

&)

This formula shows that if H(u,v) is zero or very
small in the high frequency region and MN(w,v) is
still not vanished in the corresponding region, the
second term N(w,v)/H(u,v) is amplified. Thus we
need a remedy solving ill-posed inverse problem.

In this paper, the unified Bayesian Tikhonov
regularization is extended and applied to the image
restoration problems. In section II, square residual
and smoothing term in the frequency domain are
introduced. In section III, unified Bayesian Tikhonov
regularization method is reviewed. In section IV, an
extension of the method is suggested. In section V,
experimental results show the effectiveness of the
proposed method followed by the conclusion and
reference sections[5-16].

[1. Regularization Parameter Selection in
the Frequency Domain

Regularized estimation vector is defined as

fi=H"H+ CTC) "H"yg. 4)
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Here, H and C are the block circulant matrices of
a PSF h and a smoothing operator p respectively.

A is the Tikhonov regularization parameter. g and

f , are the column vectors stacking columns of a

degraded image ¢ and a recovered image f;
respectively. Both H and € matrices have the
dimension, MN by MN. That is, m = n = MN
with image dimension M by N.

In the frequency domain, block circulant matrices
H and C are diagonalized. We denote them S and
T respectively. Let z and b be the column vectors
of the Fourier transform of f and g respectively.

Regularized estimation vector is defined as

z, =(878+\T"T) ' 8", ®)

where superscript A denotes the Hermitian or
conjugate transpose.
Square residual is defined as

o !

2 _ b2,
g, I Z}l ESYIEE Ib,| 6)

Here, s; and ¢; are the diagonal elements of the
matrices & and T respectively. b, is the element of
column vector b stacking columns of 2D Fourier
transform of the degraded image g.

Smoothing term is defined as

T NEES> L/ %)
A i=1 (|Sl|2+)\|t7|2)2 0

lll. Unified Bayesian Interpretation of
Tikhonov Regularization

MAP estimator maximizes the posterior pdf
p(flg) which can be expressed using Bayes’ law[5]
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as follows and CTC respectively.
Then we obtain a fixed point iteration method
»(flg) = M (8) for the regularization parameter.
r\g

Assume that both error and original image are
Gaussian random vectors, we have

_ I Hf—gl 2
p(glf) 7(2%0?)'"/2 emp[ 7202 } , )
1 _lerl?
p(f) PRI [ 2, ] : (10)

By taking the negative log for the Bayes’ law,

we have the MAP interpretation of Tikhonov

regularization as

an

In the
fixed-point iteration known as the MacKay update

evidence framework[6], we have

, _ I ofI?_ 2B

P - = =1/a, (12)
T Y
2 2F 2F
0’?2 g _ D _ QDZI/ﬂ. (13)
m— m—y XD
In these equations, o and (3 are unknown

hyper-parameters. E, and £, are regularization

and cost terms respectively and « is the number of
effective parameters,

T

ﬂlh‘
V_Zjlﬁmaw '

(14)

Here, p, and v; denote singular value of H'H

vy ED: vy I gll?

(0%
A=—= — o (15)
B m—=vy Ep m—v | Cfll?
with
n 1
W_iglu;ﬂv/ (16)

IV. An Extension of the Unified Bayesian
Tikhonov Regularization Method

In the Tikhonov regularization for an ill-posed
problem Hf =g, we seek a limiting vector f , to

fit data g in least squares sense with penalty term
for large normed solution in the cost function as

J(f)=%( | Hf—g 124 )11 CF1I), (17)

Here, we use Laplacian or identity smoother.
Laplacian is positive definite so the dimension is n
by n as in the identity matrix.

Equation(15) can be set up as proportionality

| Hf—gl>_ Al CFI®
m—ry v

(18)

Here, the total misfit[6] is m. Left side of the
equation is the unbiased estimate of variance(:
UEV). Then general cross validation(: GCV) is
defined as follows[7].

m | Hf—gl?

(19)
(m—7)?

GOvV= =upy—"—
m=7
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Final prediction error(: FPE) is defined as
follows[8].
_ 2
ppp—\mEVVHf =g " o mty
m(m—-) m

The cost function can be converted to the
normal equation formulation with the additional n
equations,

-t Al e

The corresponding proportionality is written as

IHf—glI*+AICFII?_ 0

g 0 (22)
Here, the total misfit is m+n.
From equation (18,) we have the following,
| Hf —glZ+ Xl 12l [ 2
f-g ol of . (23)

m vy

Applying the gamma factor m/(m - \), we have
Bayesian update for GCV variance,

| Hf—gI*+XICFI2_ MG

(24)
m—xy v
Combing equation (22) and (24), we have
| Hf—g 24Xl CfI% I CfI?
=) 7
(m+k) = v (25)

k=0,t1,...,&£n
Here, the total misfit has the range of m#n.

The Tikhonov regularization parameter is set up
as a fixed point iteration method,
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m+k—y | CFII?

En. (26)

In the frequency domain, we use equation (6)
and (7) with the number of effective parameters,

27

no s

N
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i=1

Range of k has 2n + 1 points being searched for
the global point of the relative error as new
benchmark and the model selection criteria to target
it. Golden section search can reduce time[9].

We suggest the new criteria raising gamma
factor to the power of p,

m P
GCVp == UEV[—] , (28)
m—ry
p
FPEp= UEV[ mTZV] . (29)
From these equations we  define the

corresponding geometric average criterion(: GAC)
as

(30)

GACp= UEV{ mty } "

m=ry

We find that the p = 0.7 and 2 show the best
results for the Laplacian and identity smoother
respectively to target the relative error benchmark.

V. Experimental Results

We report the experiments with the extended
method proposed in the previous section. The
method has two results of relative error(: EUB_RE)
and GACp criterion(: EUB). Figure 1 shows the

satellite image data[10]. We compare the extended
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method with the previous one(:UB) and the
conventional techniques MDP, GCV, L-curve and
Wiener filter[7, 11-13]. Results are depicted in the
figures 2 and 3. The UB method shows comparable
results with conventional methods using smoothing
the UB filter depicts under
smoothing with identity matrix that is more severe
compared to the GCV method. The EUB_RE shows
the benchmark results and the EUB has the best
performance under the new benchmark.

operator. However,

¥ | «
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Fig. 1 Satellite image data
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Fig. 2 Restored images with Laplacian smoother
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Fig. 3 Restored images with identity smoother

Image restoration performance is measured by
the figure-of-merit functions such as relative error
(RE), signal to noise ratio (SNR), peak SNR
(PSNR) and improvement of SNR (ISNR)[13-16].

Table 1. Performance Results using Laplacian
smoother

easure RE | |SNR 1 | PSNR|ISNR Remark
Meth: A
MDP ]0.3803| 8397 | 22.03 | 5.356 | 8.29-2

GCV 103449 | 9.247 | 22.87 | 6.206 | 4.45e-3
L-curve |0.4509| 6.917 | 20.55 | 3.876 | 1.00e-0

UB 10.3489| 9.146 | 22.77 | 6.106 | 7.91e-3

EUB [0.3433| 9.287 | 2292 | 6.247 | 254e-3
EUB_RE|0.3433 | 9.287 | 2292 | 6.247 | 2.47e-3
Wiener [0.3243| 9.781 | 2341 |6.740 | N/A

Table 2. Performance Results with identity
smoothing operator

easure Remark
RE | |SNR T [PSNR |ISNR
Meth: A
MDP |0.3648 | 8758 | 22.39 | 5717 | 4.75e-4
GCV 103575 | 8935 | 22.56 | 5.895 | 9.80e-5
L-curve| 0.3623 | 8818 | 22.45 | 5.777 | 4.38¢-4
UB 05694 | 4891 | 1852 | 1.850 | 1.72e-5
EUB ]03496 | 9.129 | 22.76 | 6.088 | 1.59¢-4
EUB_RE| 0.3492 | 9.139 | 22.77 | 6.098 | 1.84e-4
Wiener | 03243 | 9.781 | 2341 [6.740 | N/A

Table 1 and 2
performance with remarking value of regularization

show the image restoration

parameter A. The EUB has the best performance.

VI. Conclusions

The unified Bayesian Tikhonov regularization is
extended. When the dimension of the data matrix
is m by n (m >= n), total misfit can be m + n
instead of m. Thus the search range is extended
from one to 2n + 1 integer points. Golden section
search rather than linear one is applied to reduce
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the time. A new benchmark for optimizing relative

error and the new model selection criteria to target
it are introduced and successfully applied to image

restoration problems. We suggest L1 Smoother

instead of L2 one for the further research direction.
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