• Title/Summary/Keyword: linear relation

Search Result 1,183, Processing Time 0.025 seconds

Mediating Effect of Learning Strategy in the Relation of Mathematics Self-efficacy and Mathematics Achievement: Latent Growth Model Analyses (수학 자기효능감과 수학성취도의 관계에서 학습전략의 매개효과 - 잠재성장모형의 분석 -)

  • Yum, Si-Chang;Park, Chul-Young
    • The Mathematical Education
    • /
    • v.50 no.1
    • /
    • pp.103-118
    • /
    • 2011
  • The study examined whether the relation between mathematics self-efficacy and mathematics achievement was partially mediated by the learning strategies, using latent growth model analyses. It was also examined the auto-regressive, cross-lagged (ARCL) panel model for testing the stability and change in the relation of mathematics self-efficacy and learning strategy over time. The study analyzed the first-year to the third-year data of the Korean Educational Longitudinal Survey (KELS). The result of ARCL panel model analysis showed that earlier mathematics self-efficacy could predict later learning strategy use. There were linear trends in mathematics self-efficacy, learning strategy, and mathematics achievement. Specifically, mathematics achievement was increased over the three time points, whereas mathematics self-efficacy and learning strategies were significantly decreased. In the analyses of latent growth models, the mediating effects of learning strategies were overall supported. That is, both of initial status and change rate of rehearsal strategy partially mediated the relation of mathematics self-efficacy and mathematics achievement. However, in elaboration and meta-cognitive strategies, only the initial status of each variable showed the indirect relationship.

Fatigue Behavior of the Single Spot Welded Joint of Zinc Galvanized Steel Sheets (아연도금 강판의 점용접재의 피로균형에 관한 연구)

  • 서창민;강성수;오상표
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-34
    • /
    • 1992
  • The behavior of fatigue crack growth in the single spot welded joint of zinc galvanized steel sheets was studied experimentally and analytically based on fracture mechanics. Axial tension fatigue tests were carried out with the BSxGAB specimen that the bare plane(GAB) of monogalvanized steel sheet was spot welded to the double thickness bare steel sheet(BS), and with the GAxGAB specimen that the galvanized plane (GA) was spot welded to the equal thickness bare plane (GAB) 1. The relation between maximum stress intensity factor, K sub(max) and the number of cycles to failure, N sub(f) has shown a linear relation on log-log plot in the spot weld of the zinc galvanized steel sheet. 2. The fatigue strength of BSxGAB specimens is about 23% higher than that of GAxGAB specimens at the fatigue strength of $1\times10^6$ cycles. And the fatigue life of BSxGAB specimens at the same load range increases 6~9 times higher than that of GAxGAB specimens. 3. The general tendency at the angle of bending($\theta$) in an applied load has changed rapidly at the initial 20% of its life. After then, it has changed slowly. The change at the angle of bending has increased linearly as the load range increases. 4. It has shown a linear relation between the location ratio of initiation ${\gamma}$ and fatigue life $N_f$ on the semi-log graph paper. Here $\gamma$ means that the crack distance between main crack and sub-crack, 2L is divided by the nugget diameter, 2r. $\gamma=a{\cdot}log N_f+n$ (where a and n are material constant.)

  • PDF

The Excess and Deficit Rule and The Rule of False Position (동양의 영부족술과 서양의 가정법)

  • Chang Hyewon
    • Journal for History of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.33-48
    • /
    • 2005
  • The Rule of False Position is known as an arithmetical solution of algebraical equations. On the other hand, the Excess-Deficit Rule is an algorithm for calculating about excessive or deficient quantitative relations, which is found in the ancient eastern mathematical books, including the nine chapters on the mathematical arts. It is usually said that the origin of the Rule of False Position is the Excess-Deficit Rule in ancient Chinese mathematics. In relation to these facts, we pose two questions: - As many authors explain, the excess-deficit rule is a solution of simultaneous linear equations? - Which relation is there between the two rules explicitly? To answer these Questions, we consider the Rule of Single/Double False Position and research the Excess-Deficit Rule in some ancient mathematical books of Chosun Dynasty that was heavily affected by Chinese mathematics. And we pursue their historical traces in Egypt, Arab and Europe. As a result, we can make sure of the status of the Excess-Deficit Rule differing from the Rectangular Arrays(the solution of simultaneous linear equations) and identify the relation of the two rules: the application of the Excess-Deficit Rule including supposition in ancient Chinese mathematics corresponds to the Rule of Double False Position in western mathematics. In addition, we try to appreciate didactical value of the Rule of False Position which is apt to be considered as a historical by-product.

  • PDF

Development on Crop Yield Forecasting Model for Major Vegetable Crops using Meteorological Information of Main Production Area (주산지 기상정보를 활용한 주요 채소작물의 단수 예측 모형 개발)

  • Lim, Chul-Hee;Kim, Gang Sun;Lee, Eun Jung;Heo, Seongbong;Kim, Teayeon;Kim, Young Seok;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.193-203
    • /
    • 2016
  • The importance of forecasting agricultural production is receiving attention while climate change is accelerating. This study suggested three types of crop yield forecasting model for major vegetable crops by using downscaled meteorological information of main production area on farmland level, which identified as limitation from previous studies. First, this study conducted correlation analysis with seven types of farm level downscaled meteorological informations and reported crop yield of main production area. After, we selected three types of meteorological factors which showed the highest relation with each crop species and regions. Parameters were deducted from meterological factor with high correlation but crop species number was neglected. After, crop yield of each crops was estimated by using the three suggested types of models. Chinese cabbage showed high accuracy in overall, while the accuracy of daikon and onion was quiet revised by neglecting the outlier. Chili and garlic showed differences by region, but Kyungbuk chili and Chungnam, Kyungsang garlic appeared significant accuracy. We also selected key meteorological factor of each crops which has the highest relation with crop yield. If the factor had significant relation with the quantity, it explains better about the variations of key meteorological factor. This study will contribute to establishing the methodology of future studies by estimating the crop yield of different species by using farmland meterological information and relatively simplify multiple linear regression models.

Investigation to Teach Graphical Representations and Their Interpretations of Functions to Fifth Graders (함수의 그래프 표현 및 그래프 해석 지도 가능성 탐색 - 초등학교 5학년을 중심으로 -)

  • Lee, Hwa-Young;Ryu, Hyun-Ah;Chang, Kyung-Yoon
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.131-145
    • /
    • 2009
  • This research was designed to investigate the possibility to teach function concept and graph representation of functions in explicit manner toward at elementary level. Eight class-hours instruction was given to four Grade 5(age 11) students, and dynamic geometry software GSP was partially used in the class. Results indicate that the students could conceptualize the function relation, interpret linear function graphs, recognize the meaning of their slopes, and discuss the relationships among linear graphs and real life situation. Results also indicate that GSP helped students to recognize the relation between dots and the linear graph clearly and that GSP-line graph did decisive role for children to understand the meaning of graph representation of function.

  • PDF

Analytical Comparison of Time-Dependent Mild-Slope Equations (시간의존 완경사방정식의 이론적 비교)

  • Lee, Chang-Hoon;James T. Kirby
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.389-396
    • /
    • 1994
  • We analyze existing time-dependent mild-slope equations, which were developed by Smith and Sprinks (1975) (or, equivalently, Radder and Dingemans (1985)) and Kubo et al. (1992), in terms of the dispersion relation and energy transport. One-dimensionally in the horizontal direction, we compare the modulation of wave amplitudes for the time-dependent mild-slope equations against the linear Scrodinger equation. In view of the dispersion relation and modulation of wave amplitudes, Smith and Sprinks' model is more accurate in shallower water (kh$\leq$0.2$\pi$) and satisfies the linear Scrodinger equation in very shallow water (kh>0.2$\pi$) and satisfies the linear Scrodinger equation at a point of intermediate water depth (kh=0.3$\pi$). In view of the energy transport, Kubo et al.'s model is more accurate but yields singular solutions at some higher frequency range.

  • PDF

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Design the Autopilot System of using Fuzzy Algoritim

  • Kim, Young-Hwi;Bae, Gyu-Han;Park, Jae-Hyung;Kang, Sin-Chool;Lee, Ihn-Yong;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.296-300
    • /
    • 2003
  • The autopilot system targets decreasing labor, working environment improvement, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization. Dynamic Ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And Load Condition of ship as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that is disturbance act in non-linear from, become factor who make serv ice of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using fuzzy algorithm ,Design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

The Linear Discrepancy of a Fuzzy Poset

  • Cheong, Min-Seok;Chae, Gab-Byung;Kim, Sang-Mok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • In 2001, the notion of a fuzzy poset defined on a set X via a triplet (L, G, I) of functions with domain X ${\times}$ X and range [0, 1] satisfying a special condition L+G+I = 1 is introduced by J. Negger and Hee Sik Kim, where L is the 'less than' function, G is the 'greater than' function, and I is the 'incomparable to' function. Using this approach, we are able to define a special class of fuzzy posets, and define the 'skeleton' of a fuzzy poset in view of major relation. In this sense, we define the linear discrepancy of a fuzzy poset of size n as the minimum value of all maximum of I(x, y)${\mid}$f(x)-f(y)${\mid}$ for f ${\in}$ F and x, y ${\in}$ X with I(x, y) > $\frac{1}{2}$, where F is the set of all injective order-preserving maps from the fuzzy poset to the set of positive integers. We first show that the definition is well-defined. Then, it is shown that the optimality appears at the same injective order-preserving maps in both cases of a fuzzy poset and its skeleton if the linear discrepancy of a skeleton of a fuzzy poset is 1.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.