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Effect of Hysteresis on Interface Waves in Contact Surfaces
Nohyu Kim*T and Seungyong Yang**

Abstract This paper describes a theoretical model and acoustic amalysis of hysteresis of contacting surfaces
subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a
simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact
boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is
developed using the complex spring model to derive the dispersion relation between the interface wave speed and
the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is
studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface
without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is
anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the
Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting
surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not
affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact
surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave
mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness
approaches 0.5.
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1. Introduction The physical nature of contact acoustic
nonlinearity(CAN) has been explored by previous

The nonlinearity of contacting surfaces researchers including Solodov, Pecorari, and
originated from a highly localized plastic Biwa by developing a linear spring model for
deformation of the surface affects the acoustical contact-type interface(Solodov, 1998; Pecorari
features in many ways. One way of acoustic and Rokhlin, 2007; and Biwa et al, 2006 and
measurement of interface stiffness free from the 2007). In their studies, the elasto-plastic behavior
contamination by other source of contact of asperities in contact surfaces is considered as
nonlinearity is to use a generalized Rayleigh a linear spring whose stiffness is linearly
wave (interface wave) traveling along the contact proportional to the contact area or the
surface. This wave is a special kind of guided compression load of the interface. This spring
waves occurring in the interface of contacting model connects the discontinuous displacement
solids and is affected acoustically by interface of two contacting boundaries with the stresses of
stiffness such as the speed of interface wave. the interface by employing the interfacial
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stiffness. hysteresis of the
interfacial stiffness is neglected even though
experimental reports show that the interfacial
stiffness takes different values depending on the
loading

However, the

condition, i.e., either
unloading(Kim et al., 2007).

In this paper, the hysteretic characteristic of
interfacial  stiffness for non-welded contact
interface is included in the mathematical spring
model to investigate the interface waves along

loading or

the contact boundaries and to estimate interfacial
stiffness by interface wave speed. Dispersion
equation of interface waves is derived by
combining the wave equation with boundary
conditions: discontinuity in both displacement
and stress in interface. In the proposed model, a
hysteretic interfacial stiffness is introduced to
describe the damping behavior of interfacial
stiffness. In simulation study, the anti-symmetric
mode of interface waves is proved to exist in
the hysteretic contact surfaces and be sensitive to
the interfacial stiffness in a specific band of
acoustic frequency.

2. Mathematical Model for Hysteretic Contact
Interface

At the micro-scale, contact interface appears
as two surfaces of irregular topology which
intersect to form micro-void spaces and asperities
of contact as shown in Fig. 1(a). The presence
of the
boundaries makes a thin, compliant zone with
effective stiffness.  The
interfacial stiffness can range from near zero for

asperities and voids within planar

normal and shear

open free surface to almost infinite values for
completely welded surfaces which are bonded or
subjected to high compressive stresses. Typical
stress-displacement (approach) relation of contact-
g surfaces exhibits a highly nonlinearity as
shown in Fig. 1(b) during the loading and
unloading. Hysteresis also appears in the
stress-displacement curve of Fig. 1(b) during the
loading and unloading, indicating the presence of

melastic deformation of the asperities and
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Fig. 1 Hysteresis of interfacial stiffness, (a) Contact
surfaces, (b) Stress-approach relation

frictional sliding between contacts. In this case,
when a quasi-static load is applied and increased
slowly, the approach of the interface boundaries
increases along the curve marked as loading in
Fig. 1(b). But when the load is released at a
certain point(oy,uy), it decreases along a different
curve from the loading curve, which is labeled
as unloading in Fig. 1(b). Thus the linear
stiffness of the interface at (o,,u,) may have a
different value according to the loading
condition. If it is loading, for instance, the linear
stiffness is K’ in Fig. 1(b), but it is A* when
unloading.

This hysteretic behavior can be counted by
adopting a spring and damper with complex
stiffness connecting two joining surfaces whose
stiffness

displacement of the contact boundaries. These

and viscous force vary with the

energy-conservative and energy-dissipative ele-
ments are represented in Fig. 2, where the
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boundaries are connected by a linear spring and
viscous damper in x and z directions. In Fig. 2,
the spring and damper are expressed by an
equivalent stiffness and damping coefficient in
normal and shear directions(z and x) as shown
in dotted lines. The spring stiffness A, and K
including the damping coefficients are assumed
to be independent cach other. These hysteretic

nonlinear features surfaces are

of contact
investigated in this paper. Let’s reconsider a
quasi-equilibrium point {o,,u,) of stress-approach
curve in Fig. 1(b). When a disturbance load of
acoustic wave is applied, the equilibrium point
moves of two different paths
depending on the nature of loading. If the

disturbance is a compression load, it follows the

along one

loading curve, but it moves along the unloading
curve in Fig. 1(b) when the load is tensile. For
each of the loading/unloading curves at the point
(04,uy), the stress variation due to the load can
be expressed by the interfacial stiffness and
viscosity defined as followings for small
deformation in z-direction in Fig. 2,

o) =0, =K. (u.—u)+C (0. ~u) (1)

In eqn. (1), o, (u) is the normal stress at the
displacement uw, A, and C, are the linear
stiffness and damping coefficient of the interface
in the z direction, and the dot sign is the
derivative operator in time. Also u, stands for
the displacement(approach) of the interface in the
z direction in Fig. 2. Assuming that the damping
is a structural damping (Meirovitch, 1967), the
damping coefficient C, may be substituted by an

equivalent hysteretic damping coefficient XK,

A,
such as C, :Tj;(w: the frequency of acoustic

motion). Then the stress-approach relation in
eqn. (1) can be expressed by a single complex
stiffness (A, +£4K,.). The
alternative sign in the complex stiffness is that
the damping force

reason for the

changes its  direction

according to the loading condition. While the
damping force and spring force are in the same
direction in case of loading, they are opposite
for unloading. Therefore, the eqn. (1) can be
rewritten by the complex stiffness for loading
and wunloading cases in the z direction,

respectively

o,W)-0, =(K,+iK, Yu, —u,) for loading
o,W)y-o,= (K, —iK,, ) u, —u,) for unloading

In eqn. (2), the complex stiffness (&, +iK),)
consists of two components, of which the real
part represents a reversible linear elastic behavior
of the interface, and the imaginary describes an
irreversible  hysteretic  characteristic  of  the
interface. A similar stress-displacement relation in
the x-direction can be obtained in the same
manner by using the
(K, +iK,.).

contacting

complex stiffness
If K,=0 in eqn (2), the
surface acts like purely elastic
material, otherwise it has a hysteresis represented
by K,,. Now suppose that (u;,u}) and (#,t;)
stand for the displacement and traction of the
upper surface in x and z direction, and (ul,ul)
and (¢ ,#)) for the lower surface as shown in
Fig. 2. Since both the displacement and stress
have  discontinuity across  the interface,
constitutive equations to comnect the traction
with the displacement on both boundaries are
necessary. These conditions are obtained from
the stress-displacement relations formulated by
eqn. (2) between the

displacement across the interface in normal and

tractions and the

shear directions in Fig. 2.

Fig. 2 A spring-damper model for contact surfaces
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Assuming that a small deformation takes
place at the interface due to external load, two
boundaries of the interface move from an initial
equilibrium state to a new state independently.
Let the initial displacement of the upper and
lower surface in z direction be «*’ and u”, also
the new dlsplaccment of the upper and lower
surface as u' and u’. During this deformation,
tractions on both sides are same at the initial
state, which is t° = #° = ¢°, but change to ¢
and t; for the lower and upper surface. At the
new position, ¢ is not necessarily same as t'
because of the stress discontinuity of contact
interface. In Fig. 2, the deformation of the lower
surface made in the positive direction of z
imposes an additive compression load to the
original traction state ¢!, while that of the upper
surface releases the compression load. Therefore,
stress-deformation(approach) relation in the upper
surface undergoes a loading process, and the
lower surface follows an unloading process.
From this consideration, the stress-displacement
behavior for both boundaries in x direction can
be expressed by using the concept of eqn. (2) as
followings,

=12+ (K, +iK, Yul —u")

3
t =tf+(Kx—iKhx)(ui—u;’) S

Or

{ i . H u
= tx~zxo = (Kx +ZK/’IX)(”X —ux)

“4)
£’ =(K,

fy = ) - —iK, Wul —u®
In eqn. (4), A, and A, arc the eclastic and

hysteretic interfacial stiffness of the interface in
. o~ . .

x direction, and ‘. % are the wvariation of

tractions from the original state ¢, in the lower

and upper surface. It can be seen from eqn. (4)

that if the hysteretic stiffness A, is zero, eqn.
(4) leads to t* = ¢, which means that the stress
is continuous across the interface. It can also
represent the limiting cases for traction-free

boundary condition if A, goes to zero, and for a
welded interface as A, becomes infinity. eqn.
(4) gives a complex stiffness model for the
nonlinear hysteretic properties of non-welded
contact solids. Similar relation for normal stress
and displacement in the z direction is obtained
in the same way.

3, Formulation of Interface Wave Motions

The dispersion of interface waves along the
contact interface have been already proved and
demonstrated for the linear elastic model in
previous studies (Pecorari and Rokblin, 2007,
Biwa et al., 2006; and Kim et al., 2007). In this
section, based on the complex spring model
proposed in the previous section, the dispersion
equation of interface waves is derived. Interface
wave is localized in the interface within a zone
that may extend only a few wavelengths away
from the boundary, allowing these waves to
travel large distance with little reduction in
amplitude. The
interface wave propagating along the contact

displacement vector for an

interface in x and z direction with the amplitude
that decays exponentially with distance z away
from the interface can be expressed for the upper
and lower medium as (Kim and Yang, 2007)
ui(x,z)= w[iie"” 1 gBe 7 e
‘ ®
ul(x,z)= ol-pde

pa)z Bl efqa)z]ei(rcxfa)t)
C

b pars gz | T Kx-wt)

ul(x,z)= w[iﬁe —gB,e* e
¢ ©)

. B, .
ui(x,z_) — a)[pAze*W +l_7_e+qwz]el(r<x ot}
c
where, w is the angular frequency, ¢ is time, A4,
A,, B, and B, are unknown constants, ¢ is the

phase velocity of the interface wave, ¢, and c,

are the compression and shear wave velocity

respectively, and p"—”\/ 5 2, q= \/_“_

Calculating tractions in the upper and lower
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medium by Hooke’s law and substituting them
into the discontinuity conditions in stress and
displacement in eqn. (4) vyield four linear
equations for four undetermined constants, A,,
A,, B, and B,. Tractions in the upper and
lower medium obtained by substituting eqn. (5)
and (6) into Hooke’s law are written by

4 .
££(x,2) = @ [-2ipute 7 - uNBe 1
c

A .
£(x,z) = wz[(Lpz _C_Z)Ale—pm _Ziﬂq%e—qwz ]exocx—mz)

y | ™
ti (x,2) = —&* [2lpﬂ_ze+pa)z _ﬂNBze+qwz ]ex(/rx—zut)
C
ti (x,2) = _wz[(Lpz _iz)Azewm + Ziyqie“”” ]ei(nﬁm)
C C
where, A and u are Lame’s constants,
L=(\+2u) and N=(c?+¢’). Substituting

eqn. (5), (6) and (7) into the nonlinear
displacement discontinuity condition given by
eqn. (4) yields a system of four homogeneous
linear equations for four undetermined constants,
A,, 4,, B, and B,, which is given by

L@K, +2ump) QK. +poNy LK +2uep) (2K, +uoN)
¢ B

. . 4
@K, ~aQ)  —-CK+wq)  @pK-eQ)  —CK.+2u00) ||
| | A7 (®)
SQinop=2K) QK. +uoN)  =Qigop+2K,) QK -pol) ||
[ c )
(2ipK,. — Q) 71(Zi;1(4)q721(h!) (2ipK,. + wQ) fl(Zipmq +2K.)
[4 4

where, @=(7-Lp"). Examining the first two
equations of eqn. (8) reveals that only two

combinations of  solutions are  possible
corresponding to:
i) 4,=-4,,B,=B, )
iiy 4,=4,,B,=-B, (10)

Replacing A, and B, with 4, and B, in eqn
(8) by using eqn. (9) and (10) produces two
wave motions, one is symmetric about the
interface, and the other is anti-symmetric about
the interface. For the conditions A,=—A,, B,=
B, provoking the anti-symmetric motion, eqn.

(8) reduces to

E(Kx +uwp) 29K, + puoN 4
c |

=10} (11
) et an
-=K, -0Q 2ig(K,,——)
c c
In order for egqn. (11) to have a non-trivial
solution, the determinant of the coefficient matrix
of eqn. (11) must be zero, which is,

K, 2¢*
T2PE N9y K g K 2y o pg1-0 (12)
c u uw Lo

Substituting the definitions of N, O, p, and ¢
into eqn. (12) and rewriting it with
dimensionless quantities gives the dispersion
equation for anti-symmetric motion in nonlinear

contact interface in more concise expression

[da*a? -1’ - f* (1 —20:1)2]+2(a1f7*)\/oz2 -1

(13)
+2(%)a[2a2 2o —1- et - g2 -1}=0

C‘ 5 .
where, o= ?S , B= C—s , Z,=pec, is the shear
P

K
acoustic impedance of the medium and U;_’
3
o are the linear and hysteretic specific shear
w S

stiffness in the x direction. In the same manner,
the dispersion equation for the symmetric wave
motion of nonlinear contact interface is obtained
by substituting eqn. (10) into eqn. (8). For the
symmetric motion, A,=4,, B,=—B;, eqn. (8) is

written by
@pK.-0Q) —-QK.+2u09) |,
c 1| _
. 5 {B}—{O} (14)
2i(pK,, +~pwp) =K, +poN '
[+ c

eqn. (14) leads to the following necessary
condition for a non-trivial solution,

%120 (15)

4 2
HO[ON + ?upqh K, 2pu+Kk, -7”[21%1 +;

Putting the definitions of N, Q, p, and ¢ into
eqn. (15) and rewriting it with dimensionless
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quantities, « and f, gives
symmetric

interface in compact form as follows

[4,12@.@41_20,2)2%2(%)@?
@. ¥
a’fﬂﬂ Yef2a® ~ et ~1-yad - B ~1)=0

Z.c

the dispersion

equation for motion in  contact

(16)

+2(:

hz

2z
wZ,’ wZ,

5 §

where,

are the linear and hysteretic

specific normal stiffnesses. Eqn. (13) and (16)
are the complete dispersion equations describing
the interface waves propagating along the
hysteretic contact interface. It is clear that the
first terms of eqn. (13) and (16) represent the
free Rayleigh ecquation for the free boundary
condition. If the interface is free of stress, ie.,
K, = K, = K; = K, = 0, the dispersion
equation of egn. (13) and (16) becomes the
famous Rayleigh characteristic equation, which is
given by,

ag’a? —1-+Ja* = -(1-2a*Y¥ =0 (17

In terms of the velocities of shear, normal, and
interface waves, the above equation is expressed

as
02 C2 02
4 /1——2~ /1-—2--(2——2)2=0 (18)
cs cl Cs

Second and third term of eqn. (13) and (16)
result from the linear and hysteretic contact of
interface  surfaces, respectively. The angular
frequency « included in eqn. (13) and (16)
indicates that the interface waves are dispersive,
so that the wave velocity varies with the
frequency as well as material properties such as
contact stiffness. The
anti-symmetric waves represented by eqn. (13)
and (16) are a guided waves, which can be
schematized in Fig. 3. They degenerate to the
Rayleigh waves on the free surface when the

dimensionless

symmetric  and

lincar and Thysteretic interface
stiffnesses are zero. If they are finite, unlike the

Rayleigh equation, eqn. (13) and (16) become

()

Fig. 3 Symmetric (a) and Anti-symmetric (b) Mode
of interface waves

dispersive. eqn. (13) and (16) also show that the
symmetric wave mode comes from the normal
coupling between the surfaces of the interface and
the anti-symmetric wave from the tangential shear
coupling.

In order for the interface waves to exist and
propagate, eqn. (13) and (16) should have real
roots, However, the symmetric wave motion of
eqn. (16) doesn’t have real roots at all regardless
of the magnitude of the linear and nonlinear
stiffness. Therefore the symmetric wave does not
exist all the time. From eqn. (13) it is obvious
that the ant-symmetric wave has real roots even
though the hysteretic stiffness K, is present.
Moreover, the anti-symmetric mode is always
found in the interface because K, is small

comparing to K, in reality.
4. Dispersion of Anti-Symmetric Waves

Fig. 4 describes the dispersion curves of the

interface wave (anti-symmetric mode) as a

function of frequency when the hysteretic
stiffness is negligible. In Fig. 4, the phase speed
of the interface wave in the contact surface of

three different stiffness values from 10 GPa/m to
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1000 GPa/m is displayed. As the frequency of
the interface wave increases, the interface wave
velocity increases together. However for a low
0.01 MHz, the
interface wave speed is almost same as the shear

frequency wave less than

wave velocity and does not change much with
the frequency no matter how large the interfacial
stiffness is. Also in the high frequency range
above 10 MHz, it becomes close the speed of
Rayleigh surface wave and change little with the
linear stiffness K. But it increases remarkably
between 0.01 MHz and 10 MHz even though the
sensitive band depend on the stiffness and
property(acoustic
asymptotes to the shear wave velocity as the

material impedance). It

frequency increases up to few MHz order. In
CS -
Fig. 5, the phase velocity ratio, a= - 18

plotted against the linear interfacial stiffness A,
to investigate the effect of the linear stiffness on
the dispersion of interface waves. It changes
very little in the range of low specific stiffness
below than 0.01, but increases very rapidly
between 0.01 and 10, and finally saturates above
10. In an interface of low linear stiffness, the
interface wave propagates with the speed of
Rayleigh surface wave no matter what material
the interface is made of. But it moves faster and
up to the speed of shear wave, c¢,, when the

stiffness K, increases. The smaller the velocity

&

ratio 8= — is, the slower the interface wave
C
?

becomes. Thus Fig. 5 implies that the interface
wave velocity can indicate a contacting state of
the interface. When the interface is closed and
compressed very tight, so that the linear stiffness
gets large, the interface wave speed becomes
faster than the Rayleigh surface wave. On the
contrary it approaches the Rayleigh wave if the
interface is open and free.

Finally, the effect of hysteretic stiffness A},
on the dispersion is illustrated in Fig. 6. Unlike
the linear stiffness, the speed of interface wave
monotonically decreases with the increase of

K, =10GPa/m, Z=24.5x10° (Kg/m’sec)

- -
o Y
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Fig. 4 Dispersion of anti-symmetric mode wave
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3

near 0.5, no matter how high the linear stiffness

is. If the specific hysteretic stiffness w?
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becomes higher than the critical value, no
interface wave can propagate or exist.
Interesting fact is that the hysteretic stiffness
does affect very much the interface wave speed
for an interface with low linear stiffness, while it
does not for the high linear stiffness. This means
that the hysteresis of an interface plays an
important role on the dispersive characteristic
when the interface is weakly closed. But it has
no effect on the dispersion of the interface
waves if the interface is closed very tight under
compression like an early fracture surfaces. In
Fig. 6, the interface speed is not affected by the
hysteretic stiffness for an interface of high linear
specific stiffness more than about 100. However,

for the interface with linear stiffness less than
K

T

sz:

0.1, the

phase  velocity  decreases

significantly with the increase of the hysteretic
stiffness. In the limiting case that the hysteretic

stiffness

approaches 0.5 in Fig. 6, the

phase velocity of interface wave asymptotes to
the Rayleigh wave velocity regardless of the
linear stiffness and material properties. No
propagating waves exist beyond the value of
Ky,

wZ,

s

=0.5 as shown in Fig. 6, where the phase

velocity of the anti-symmetric interface wave is
bounded to the shear wave velocity regardless of

It is also found from Fig. 6 that the linear
stiffness K, plays a key role too in the
dispersion characteristics in entire region. Phase
velocity is increased up to 10% by the increase
of the linear stiffness K. On the contrary to the
hysteretic stiffness, the higher linear stiffness
makes the interface wave faster. However, if the
linear stiffness A, is high enough as represented
in Fig. 6, the phase velocity is almost constant
and insensitive to the hysteretic stiffness X . It
can be deduced that this dependency of interface
wave velocity on the linear and hysteretic
stiffnesses can be used to analyze and estimate

the contact state of non-welded interface such as
partly closed cracks.

5. Conclusions

Interface waves of contact interface with
hysteresis arc demonstrated in theory to exist
based on a spring model that has a complex
stiffness. Hysteretic linear model for contact
interface is developed to relate discontinuous
displacements with tractions on both sides of the
contact interface by employing the hysteretic
interfacial stiffness. Analytic formulation of the
interface waves and solutions to the wave
equations are derived to obtain the dispersion
equations for the symmetric and anti-symmetric
interface waves. Analysis of the dispersion
equations shows that the symmetric mode does
not exist and only anti-symmetric mode can
propagate along the interface as a guided wave
if the hysteretic specific stiffness is small less
than 0.5. Theoretical results verify that the phase
velocity and hysteresis of the anti-symmetric
wave is sensitive to contact state and the wave
speed changes as much as 10% depending on
both the linear and hysteretic stiffness. It is also
velocity of the
anti-symmetric wave is bounded between the

proved that the phase

shear wave velocity and the Rayleigh wave
velocity even when the hysterctic stiffness is
included. It can be concluded that interface
waves can be used effectively to estimate the
contact stiffness or fracture state.
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