DOI QR코드

DOI QR Code

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil

다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구

  • Yoo, Kunsun (Department of Civil Engineering, Halla University)
  • Received : 2018.10.10
  • Accepted : 2018.11.27
  • Published : 2018.12.01

Abstract

Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Duncan & Chang(1970)는 던컨-창 모델을 제안하면서 흙시료의 초기 접선계수와 극한 축차응력을 구하기 위하여 쌍곡선이론을 사용하여 삼축압축시험의 응력-변형률의 비선형관계를 변환된 변형률/축차응력-변형률의 선형관계로 재구성하였다. 그러나 변환된 응력-변형률 관계는 이론적으로 선형관계를 나타내지만, 실제로는 시험이 시작되는 변형률이 작은 구간과 시료가 파괴에 이르는 변형률이 큰 구간에서는 비선형관계를 보인다. 이러한 현상은 삼축압축시험의 응력-변형률 곡선이 완전한 쌍곡선 형태가 아님을 나타낸다. 따라서 변환된 응력-변형률 곡선의 전 구간에 대하여 선형 회귀분석을 실시하여 직선의 식을 구하게 되면, 비선형관계를 나타내는 구간의 범위에 따라 선형관계식의 산정에 편차가 발생하게 된다. 이러한 편차를 줄이기 위하여 본 연구에서는 변환응력-변형률 관계에서 비선형을 나타내는 초반과 종반 구간을 제외한 구간에 대하여 선형회귀분석을 실시함으로써 초기접선계수와 극한 축차응력을 산정하는 수정회귀분석법을 제안하였다. 수정회귀분석법을 검증하기 위하여, 풍화토의 다짐시료에 대하여 압밀-배수 삼축압축시험을 실시하였다. 삼축압축시험의 응력-변형률 곡선으로부터 구한 변환응력-변형률 관계에 대해서 수정회귀분석을 실시하여 Duncan et al.(1980)이 제안한 2점법으로 구한 결과와 비교하였다. 분석결과 수정회기분석법에 비해 Duncan의 2점법으로 산정한 초기 접선계수는 4.0% 크게, 그리고 극한 축차응력은 2.9% 작게 평가되었다.

Keywords

HJHGC7_2018_v19n12_47_f0001.png 이미지

Fig. 1. Hyperbolic stress-strain curve

HJHGC7_2018_v19n12_47_f0002.png 이미지

Fig. 2. Transformed hyperbolic stress-strain curve

HJHGC7_2018_v19n12_47_f0003.png 이미지

Fig. 3. Comparison between actual stress strain curve and hyperbolic model

HJHGC7_2018_v19n12_47_f0004.png 이미지

Fig. 4. Deviator stress - axial strain plot for 5 Sites

HJHGC7_2018_v19n12_47_f0005.png 이미지

Fig. 5. Stress-strain plot and transformed stress-strain plot for Site-A

HJHGC7_2018_v19n12_47_f0006.png 이미지

Fig. 6. Comparison between measured plot and calculated result due to regression analysis of A-D range for Site-A

HJHGC7_2018_v19n12_47_f0007.png 이미지

Fig. 7. Stress-strain plot and transformed stress-strain plot for Site-C

HJHGC7_2018_v19n12_47_f0008.png 이미지

Fig. 8. Comparison between measured plot and calculated result due to regression analysis of A-D range for Site-C

HJHGC7_2018_v19n12_47_f0009.png 이미지

Fig. 9. Comparison of original regression analysis line and modified regression analysis line of transformed stress-strain plot for Site-A and Site-C

HJHGC7_2018_v19n12_47_f0010.png 이미지

Fig. 10. Comparison of Ei and (σ1 - σ3)ult of original regression analysis and modified regression analysis for 5 Sites

HJHGC7_2018_v19n12_47_f0011.png 이미지

Fig. 11. Stress-strain curve calculated with original regression analysis line and modified regression analysis line for Site-A

HJHGC7_2018_v19n12_47_f0012.png 이미지

Fig. 12. Stress-strain curve calculated with original regression analysis line and modified regression analysis line for Site-C

HJHGC7_2018_v19n12_47_f0013.png 이미지

Fig. 13. Finding representative two points so as to determine the equation of modified regression analysis line ($\overline{A'D'}$) for Site-A and Site-C

HJHGC7_2018_v19n12_47_f0014.png 이미지

Fig. 14. Estimation of parameter a and b using 2 points method for Site-A and Site-C

HJHGC7_2018_v19n12_47_f0015.png 이미지

Fig. 15. Measured and calculated stress-strain curves for drained triaxial tests on compacted weathered soils at 5 Sites

HJHGC7_2018_v19n12_47_f0016.png 이미지

Fig. 16. Comparison of Ei and (σ1 - σ3)ult between Duncan et al.(1980) and modified regression analysis for 5 Sites

Table 1. Summary of physical properties and modified proctor test

HJHGC7_2018_v19n12_47_t0001.png 이미지

Table 2. Duncan-Chang model parameters calculated within range of AD for 5 Sites

HJHGC7_2018_v19n12_47_t0002.png 이미지

Table 3. Duncan-Chang model parameters calculated within range of BC for 5 Sites

HJHGC7_2018_v19n12_47_t0003.png 이미지

Table 4. Stress level, $\frac{{\sigma}_1-{\sigma}_3}{({\sigma}_1-{\sigma}_3)_f}$ of two points on stress-strain curve for 5 Sites

HJHGC7_2018_v19n12_47_t0004.png 이미지

Table 5. Comparison of Ei and (σ1 - σ3)ult of Duncan et al.(1980) and Modified regression analysis

HJHGC7_2018_v19n12_47_t0005.png 이미지

References

  1. 정지승, 신영완, 김만화, 국윤모, 정규경, 김필수, 이상환 (2018), "지반굴착 해석모델에 따른 변위거동에 관한 연구", 한국지반 환경공학회 논문집, 2018, 제19권 제4호, pp. 27-32.
  2. 최동호, 김원철, 김기남 (2001), "파형강판 암거의 근사해석", 한국지반환경공학회 논문집, 2001, 제2권 제4호, pp. 15-27.
  3. Duncan, J. M. and Chang, C-Y. (1970), Nonlinear analysis of stress and strain in soils, Journal of the Soil Mechanics and Foundations Division, ASCE, 96(SM5): 1629-1653.
  4. Duncan, J. M., Byrne, P., Wong, K. S. and Mabry, P. (1978), Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses, Report No. UCB/GT/78-02, University of California, Berkeley.
  5. Duncan, J. M., Byrne, P., Wong, K. S. and Mabry, P. (1980), Strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses, Geotechnical Engineering Report No. UCB/GT/80-01, University of California, Berkeley.
  6. Janbu, N. (1963), "Soil compressibility as determined by oedometer and triaxial test", Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Vol. 1, pp. 19-25.
  7. Kondner, R. L. (1963), Hyperbolic stress-strain response: cohesive soils, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, Proc. paper 3429, 1963, pp. 115-143.
  8. Kondner, R. L. and Zelasko, J. S. (1963a), A hyperbolic stressstrain formulation for sands, Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundations Engineering, Brazil, Vol. 1, 1963a, pp. 289-324.
  9. Kondner, R. L. and Zelasko, J. S. (1963b), Void ratio effects on the hyperbolic stress-strain response of a sand, Laboratory Shear Testing of Soils, ASTM STP No. 361, Ottawa.
  10. Kondner, R. L. and Horner, J. M. (1965), Triaxial compression of a cohesive soil with effective octahedral stress control, Canadian Geotechnical Journal, Vol. 2, No. 1, pp. 40-52. https://doi.org/10.1139/t65-004
  11. Kim, K. S. and Yoo, C. H. (2005), Design loading on deeply beried box culverts, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 1, January, 2005, pp. 20-27. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(20)
  12. Lade, P. V. (2005), Overview of constitutive models for soils, ASCE Geotechnical Special Publication No. 128, Soil Constitutive Models; Evaluation, Selection, and Calibration, Edited by J. A. Yamamuro and V. N. Kaliakin, January, 2005, pp. 1-34.
  13. Likitlersuang, S., Surarak, C., Balasubramania, A., Oh, E., Kim, S. R. and Wanatowski D. (2013), Duncan-Chang parameters for hyperbolic stress strain behaviour of soft Bangkok clay, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, September, 2013, pp. 381-384.
  14. Stark, T. D., Ebeling, R. M. and Vettel, J. J. (1994), Hyperbolic stress-strain parameters for silts, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 120, No. 1, February, 1994, pp. 420-44. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(420)